PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Continuous improvement: leveraging data security in Industry 4.0 settings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This study aims to explore the critical role of data security in continuous improvement within Industry 4.0 settings. It focuses on identifying how robust data security practices enable organizations to enhance operational efficiency, foster innovation, and protect sensitive information assets. Additionally, the research highlights the interplay between technological advancements, regulatory compliance, and proactive risk management in achieving sustainable organizational growth. Design/methodology/approach: The research adopts a mixed-method approach to investigate the role of data security in continuous improvement within Industry 4.0. A comprehensive literature review was conducted to identify key theoretical frameworks and best practices related to cybersecurity and continuous improvement. The study also incorporates case analysis of Industry 4.0 technologies, such as IoT, AI, and big data analytics, highlighting their integration with data security strategies. By analyzing real-world applications and leveraging predictive analytics and compliance audits, the research demonstrates how secure data practices can enhance organizational performance and foster innovation. Findings: The study identifies that data security is an indispensable component of continuous improvement in Industry 4.0. Secure data practices enhance decision-making, promote operational resilience, and enable proactive risk mitigation. Moreover, they support compliance with regulatory frameworks, such as GDPR and ISO 27001, while fostering a culture of innovation and trust among stakeholders. The findings also reveal significant challenges, including technological complexity, resource constraints, and rapidly evolving cyber threats. Research limitations/implications: The research is limited by the availability of empirical data on specific Industry 4.0 applications. Future studies could expand on the practical implementation of data security measures across diverse industries and explore the economic implications of continuous improvement strategies. Additional research on emerging technologies, such as blockchain and quantum computing, could further enrich the understanding of secure data management. Practical implications: The study provides actionable insights for businesses seeking to integrate data security into their continuous improvement processes. It emphasizes the importance of investing in advanced security technologies, workforce training, and compliance frameworks to enhance organizational resilience. These recommendations are particularly relevant for enterprises navigating the complexities of Industry 4.0. Originality/value: This paper contributes to the literature by linking data security directly with continuous improvement in Industry 4.0. It offers a novel perspective on the strategic importance of secure data practices, supported by both theoretical insights and practical applications. The findings are valuable to researchers, policymakers, and industry leaders focused on sustainable growth and technological innovation.
Rocznik
Tom
Strony
661--672
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
  • Faculty of Management, University of Technology
Bibliografia
  • 1. Arica, E., Powell, D.J. (2017). Status and future of manufacturing execution systems, pp. 2000-2004. IEEE.
  • 2. Bai, C., Dallasega, P., Orzes, G., Sarkis, J. (2020). Industry 4.0 technologies assessment: A sustainability perspective. International Journal of Production Economics, 229, 107776.
  • 3. Beifert, A., Gerlitz, L., Prause, G., Beifert, A., Gerlitz, L., Prause, G. (2018). Industry 4.0 - For Sustainable Development of Lean Manufacturing Companies in the Shipbuilding Sector. Springer International Publishing, 36, 563-573.
  • 4. Bibby, L., Dehe, B. (2018). Defining and assessing industry 4.0 maturity levels - case of the defence sector. Production Planning & Control, 29, 1030-1043.
  • 5. Cavdur, F., Yagmahan, B., Oguzcan, E., Arslan, N., Sahan, N. (2019). Lean service system design: a simulation-based VSM case study. BPMJ, 25, 1802-1821.
  • 6. Da Costa, M.B., Dos Santos, Leonardo Moraes Aguiar Lima, Schaefer, J.L., Baierle, I.C., Nara, E.O.B. (2019). Industry 4.0 technologies basic network identification. Scientometrics, 121, 977-994.
  • 7. Dallasega, P., Rojas, R.A., Rauch, E., Matt, D.T. (2017). Simulation Based Validation of Supply Chain Effects through ICT enabled Real-time-capability in ETO Production Planning. Procedia Manufacturing, 11, 846-853.
  • 8. Dogan (2018). Data perspective of lean six sigma in industry 4.0 era: A guide to improve quality. Proc. Int. Conf. Ind. Eng. Oper. Manag., 943.
  • 9. Dombrowski, U., Richter, T., Krenkel, P. (2017). Interdependencies of Industrie 4.0 & Lean Production Systems: A Use Cases Analysis. Procedia Manufacturing, 11, 1061-1068.
  • 10. Frank, A.G., Dalenogare, L.S., Ayala, N.F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15-26.
  • 11. Gattullo, M., Scurati, G.W., Fiorentino, M., Uva, A.E., Ferrise, F., Bordegoni, M. (2019). Towards augmented reality manuals for industry 4.0: A methodology. Robotics and Computer-Integrated Manufacturing, 56, 276-286.
  • 12. Ghobakhloo, M., Fathi, M. (2020). Corporate survival in Industry 4.0 era: the enabling role of lean-digitized manufacturing. Journal of Manufacturing Technology Management, 31, 1-30.
  • 13. Gomes Leite, D., Estombelo Montesco, R.A., Sakuraba, C.S. (2018). Increasing a gas distributor net profit through Lean Six Sigma. Quality Engineering, 30, 359-370.
  • 14. Hambach, J., Kümmel, K., Metternich, J. (2017). Development of a Digital Continuous Improvement System for Production. Procedia CIRP, 63, 330-335.
  • 15. Ito (2020). Digital Twin Technology for Continuous Improvement at Manufacturing Sites. Digit. Solut. Better Futur. Soc., 69, 66.
  • 16. Iuga, M.V., Rosca, L.I. (2017). Comparison of problem solving tools in lean organizations. MATEC Web Conf., 121, 2004.
  • 17. Karlovits (2017). Technologies for using big data in the paper and printing industry. J. Print Media Technol. Res., 6, 75.
  • 18. Khan, M.A., Kumar, N., Alsamhi, S.H., Barb, G., Zywiołek, J., Ullah, I., Noor, F., Shah, J.A., Almuhaideb, A.M. (2024). Security and Privacy Issues and Solutions for UAVs in B5G Networks: A Review. IEEE Trans. Netw. Serv. Manage., 1.
  • 19. Li, Z., Wang, K., He, Y. (2016). Industry 4.0 - Potentials for Predictive Maintenance. Atlantis Press.
  • 20. Maarof, M.G., Mahmud, F. (2016). A Review of Contributing Factors and Challenges in Implementing Kaizen in Small and Medium Enterprises. Procedia Economics and Finance, 35, 522-531.
  • 21. Manuri (2018). Augmented Reality in Industry 4.0. Am. J. Comput. Sci. Inf. Technol., 6, 17.
  • 22. Mayr, A., Weigelt, M., Kühl, A., Grimm, S., Erll, A., Potzel, M., Franke, J. (2018). Lean 4.0 - A conceptual conjunction of lean management and Industry 4.0. Procedia CIRP, 72, 622-628.
  • 23. Meesublak, K., Klinsukont, T. (2020). A Cyber-Physical System Approach for Predictive Maintenance. IEEE, 337-341.
  • 24. Meister, M., Beßle, J., Cviko, A., Böing, T., Metternich, J. (2019). Manufacturing Analytics for problem-solving processes in production. Procedia CIRP, 81, 1-6.
  • 25. Miqueo, A., Torralba, M., Yagüe-Fabra, J.A. (2020). Lean Manual Assembly 4.0: A Systematic Review. Applied Sciences, 10, 8555.
  • 26. Mora (2017). Exploiting lean benefits through smart manufacturing: A comprehensive perspective. IFIP Adv. Inf. Commun. Technol., 513, 127.
  • 27. Mrugalska, B., Wyrwicka, M.K. (2017). Towards Lean Production in Industry 4.0. Procedia Engineering, 182, 466-473.
  • 28. Pekarčíková, M., Trebuňa, P., Kliment, M. (2019). Digitalization effects on the usability of lean tools. AL, 6, 9-13.
  • 29. Rosin, F., Forget, P., Lamouri, S., Pellerin, R. (2020). Impacts of Industry 4.0 technologies on Lean principles. International Journal of Production Research, 5, 1644-1661.
  • 30. Rossini, M., Costa, F., Tortorella, G.L., Portioli-Staudacher, A. (2019). The interrelation between Industry 4.0 and lean production: an empirical study on European manufacturers. The International Journal of Advanced Manufacturing Technology, 102, 3963-3976.
  • 31. Shafiq, S.I., Velez, G., Toro, C., Sanin, C., Szczerbicki, E. (2016). Designing Intelligent Factory: Conceptual Framework and Empirical Validation. Procedia Computer Science, 96, 1801-1808.
  • 32. Shahin, M., Chen, F.F., Bouzary, H., Krishnaiyer, K. (2020). Integration of Lean practices and Industry 4.0 technologies: smart manufacturing for next-generation enterprises. Int. J. Adv. Manuf. Technol., 107, 2927-2936.
  • 33. Taylor, S.J.E., Anagnostou, A., Kiss, T., Taylor, S.J.E., Anagnostou, A., Kiss, T. (2019). High Speed Simulation Analytics. Springer International Publishing, 167-189.
  • 34. Tortorella, G., Sawhney, R., Jurburg, D., Paula, I.C. de, Tlapa, D., Thurer, M. (2021). Towards the proposition of a Lean Automation framework. JMTM, 32, 593-620.
  • 35. Tuominen, V. (2016). The measurement-aided welding cell-giving sight to the blind. The International Journal of Advanced Manufacturing Technology, 86, 371-386.
  • 36. Valamede (2020). Lean 4.0: A new holistic approach for the integration of lean manufacturing tools and digital technologies. Int. J. Math. Eng. Manag. Sci., 5, 854.
  • 37. Vinodh, S., Antony, J., Agrawal, R., Douglas, J.A. (2021). Integration of continuous improvement strategies with Industry 4.0: a systematic review and agenda for further research. TQM, 33, 441-472.
  • 38. Wolniak, R., Dolata, M., Hadryjańska, B., Wysokińska-Senkus, A. (2024). Employing business analytics in industry 4.0 settings for human resource analytics. SPSUTOM, 629-640.
  • 39. Żywiołek, J. (2024a). Building Trust in AI-Human Partnerships: Exploring Preferences and Influences in the Manufacturing Industry. Management Systems in Production Engineering, 32, 244-251.
  • 40. Żywiołek, J. (2024b). Knowledge-Driven Sustainability: Leveraging Technology for Resource Management in Household Operations. ECKM, 25, 974-982.
  • 41. Żywiołek, J. (2024c). Trust-Building in AI-Human Partnerships Within Industry 5.0. System Safety: Human - Technical Facility - Environment, 6.
  • 42. Żywiołek, J., Trigo, A., Rosak-Szyrocka, J., Khan, M.A. (2022). Security and Privacy of Customer Data as an Element Creating the Image of the Company. Management Systems in Production Engineering, 30, 156-162.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b651092b-47e1-449a-8a8a-1db6018c2886
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.