Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An effort is made to understand and quantify the influence of near surface zonal and meridional winds, incoming shortwave radiation, and freshwater flux air-sea forcings on the seasonal variability of the hydrography, circulation, and mixed layer depth of the Arabian Sea (AS) and Bay of Bengal (BoB). Sensitivity experiments using an ocean general circulation model are carried out for this purpose in the Indian ocean around 65°-95°E, 5°-22°N during 1998-2014 (17 years). In the absence of near surface wind forcing, the sea surface temperature of the region greatly increases in all the seasons, whereas, in the absence of incoming shortwave radiation forcing, exactly opposite is the case. The sea surface salinity of the AS and BoB decreases in the absence of wind and shortwave radiation forcings, whereas, in the northern BoB it increases in the absence of freshwater flux forcing. The sub-surface changes in the stratification of temperature and salinity are also investigated. The influence of the air-sea forcings on the mixed layer depth of the region is found to be highly seasonally dependent. The effect of air-sea forcings on the seasonal variability of the upper ocean vertical stability is studied using the vertical shear of the horizontal velocity, buoyancy frequency, and energy required for mixing as quantifiers. The near surface wind forcing has highest contribution in changing the surface circulation of the region.
Czasopismo
Rocznik
Tom
Strony
169--186
Opis fizyczny
Bibliogr. 46 poz., wykr.
Twórcy
autor
- K Banerjee Centre of Atmospheric and Ocean Studies and M N Saha Centre of Space Studies, University of Allahabad, Allahabad, UP 211002, India
autor
- K Banerjee Centre of Atmospheric and Ocean Studies and M N Saha Centre of Space Studies, University of Allahabad, Allahabad, UP 211002, India
autor
- K Banerjee Centre of Atmospheric and Ocean Studies and M N Saha Centre of Space Studies, University of Allahabad, Allahabad, UP 211002, India
Bibliografia
- [1] Agarwal, N., Sharma, R., Basu, S. K., Sarkar, A., Agarwal, V. K., 2007. Evaluation of relative performance of QuikSCAT and NCEP reanalysis winds through simulations by an OGCM. Deep-Sea Res. Pt. I Oceanogr. Res. Pap. 54 (8), 1311-1328.
- [2] Akhil, V. P., Durand, F., Lengaigne, M., Vialard, J., Keerthi, M. G., Gopalakrishna, V. V., Deltel, C., Papa, F., de Boyer Montégut, C., 2014. A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal. J. Geophys. Res. Oceans 119 (6), 3926-3947.
- [3] Anitha, G., Ravichandran, M., Sayanna, R., 2008. Surface buoyancy flux in Bay of Bengal and Arabian Sea. Ann. Geophys. 26 (3), 395-400.
- [4] Balmaseda, M. A., Mogensen, K., Weaver, A. T., 2013. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 139 (674), 1132-1161.
- [5] Callaghan, A. H., Ward, B., Vialard, J., 2014. Influence of Surface forcing on near-surface and mixing layer turbulence in the Tropical Indian Ocean. Deep-Sea Res. Pt. I Oceanogr. Res. Pap. 94, 107-123.
- [6] Chatterjee, A., Shankar, D., Shenoi, S. S. C., Reddy, G. V., Michael, G. S., Ravichandran, M., Sanjeevan, V. N., 2012. A new atlas of temperature and salinity for the North Indian Ocean. J. Earth Syst. Sci. 121 (3), 559-593.
- [7] Chowdary, J. S., Parekh, A., Ojha, S., Gnanaseelan, C., Kakatkar, R., 2016. Impact of upper ocean processes and air-sea fluxes on seasonal SST biases over the tropical Indian Ocean in the NCEP Climate Forecasting System. Int. J. Climatol. 36 (1), 188-207.
- [8] Da-Allada, C. Y., Gaillard, F., Kolodziejczyk, N., 2015. Mixed-layer salinity budget in the tropical Indian Ocean: seasonal cycle based only on observations. Ocean Dyn. 65 (6), 845-857.
- [9] De Boyer Montégut, C., Mignot, J., Lazar, A., Cravatte, S., 2007. Control of salinity on the mixed layer depth in the world ocean: 1. General description. J. Geophys. Res. - Oceans 112, C06011, http://dx.doi.org/10.1029/2006JC003953.
- [10] Duncan, B., Han, W., 2009. Indian Ocean intraseasonal sea Surface temperature variability during boreal summer: Madden-Julian Oscillation versus submonthly forcing and processes. J. Geophys. Res. - Oceans 114, C05002, http://dx.doi.org/10.1029/2008JC004958.
- [11] Gopalkrishna, V. V., Sadhuram, Y., Babu, V. R., 1988. Variability of mixed layer depth in the northern Indian Ocean during 1977 and 1979 summer monsoon seasons. Indian J. Mar. Sci. 17 (4), 258-264.
- [12] Gordon, A. L., Susanto, R. D., Vranes, K., 2003. Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature 425 (6960), 824-828.
- [13] Han, W., Webster, P. J., 2002. Forcing mechanisms of sea level interannual variability in the Bay of Bengal. J. Phys. Oceanogr. 32 (1), 216-239.
- [14] Han, W., McCreary, J. P., Kohler, K. E., 2001. Influence of precipitation minus evaporation and Bay of Bengal rivers on dynamics, thermodynamics, and mixed layer physics in the upper Indian Ocean. J. Geophys. Res. -Oceans 106 (C4), 6895-6916.
- [15] Howden, S. D., Murtugudde, R., 2001. Effects of river inputs into the Bay of Bengal. J. Geophys. Res. - Oceans 106 (C9), 19825-19843.
- [16] Jackett, D. R., McDougall, T. J., 1995. Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Tech. 12, 381-389.
- [17] Jana, S., Gangopadhyay, A., Chakraborty, A., 2015. Impact of seasonal river input on the Bay of Bengal simulation. Cont. Shelf Res. 104, 45-62.
- [18] Jaswal, A. K., Singh, V., Bhambak, S. R., 2012. Relationship between sea surface temperature and surface air temperature over Arabian Sea, Bay of Bengal and Indian Ocean. J. Ind. Geophys. Union 16 (2), 41-53.
- [19] Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437-470.
- [20] Kumar, S. P., Prasad, T. G., 1999. Formation and spreading of Arabian Sea high-salinity water mass. J. Geophys. Res. - Oceans 104 (C1), 1455-1464.
- [21] Large, W. G., Pond, S., 1982. Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr. 12 (5), 464-482.
- [22] Large, W. G., McWilliams, J. C., Doney, S. C., 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32 (4), 363-403.
- [23] Li, Y., Han, W., Shinoda, T., Wang, C., Lien, R. C., Moum, J. N., Wang, J. W., 2013. Effects of the diurnal cycle in solar radiation on the tropical Indian Ocean mixed layer variability during wintertime Madden-Julian Oscillations. J. Geophys. Res. - Oceans 118 (10), 4945-4964.
- [24] Liu, Z., Alexander, M., 2007. Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys. 45 (2), RG2005, http://dx.doi.org/10.1029/2005RG000172.
- [25] Lorbacher, K., Dommenget, D., Niiler, P. P., Köhl, A., 2006. Ocean mixed layer depth: a subsurface proxy of ocean-atmosphere variability. J. Geophys. Res. - Oceans 111 (C7), http://dx.doi.org/10.1029/2003JC002157.
- [26] Marshall, J., Adcroft, A., Hill, C., Perelman, L., Heisey, C., 1997. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. - Oceans 102 (C3), 5753-5766.
- [27] Perigaud, C., McCreary, J. P., Zhang, K. Q., 2003. Impact of interannual rainfall anomalies on Indian Ocean salinity and temperaturę variability. J. Geophys. Res. - Oceans 108 (C10), http://dx.doi.org/10.1029/2002JC001699.
- [28] Prasad, T. G., 2004. A comparison of mixed-layer dynamics between the Arabian Sea and Bay of Bengal: one-dimensional model results. J. Geophys. Res.- Oceans 109 (C3), http://dx.doi.org/10.1029/2003JC002000.
- [29] Prasad, T. G., Ikeda, M., Kumar, S. P., 2001. Seasonal spreading of the Persian Gulf Water mass in the Arabian Sea. J. Geophys. Res.-Oceans 106 (C8), 17059-17071.
- [30] Rao, R. R., Sivakumar, R., 2003. Seasonal variability of sea Surface salinity and salt budget of the mixed layer of the north Indian Ocean. J. Geophys. Res.- Oceans 108 (C1), 3009, http://dx.doi.org/10.1029/2003JC002157.
- [31] Schott, F. A., McCreary, J. P., 2001. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 51 (1), 1-123.
- [32] Schott, F. A., Dengler, M., Schoenefeldt, R., 2002. The shallow overturning circulation of the Indian Ocean. Prog. Oceanogr. 53 (1), 57-103.
- [33] Sengupta, D., Bharath Raj, G. N., Shenoi, S. S. C., 2006. Surface freshwater from Bay of Bengal runoff and Indonesian throughflow in the tropical Indian Ocean. Geophys. Res. Lett. 33 (22), L22609, http://dx.doi.org/10.1029/2006GL027573.
- [34] Seo, H., Xie, S. P., Murtugudde, R., Jochum, M., Miller, A. J., 2009. Seasonal effects of Indian Ocean freshwater forcing in a regional coupled model. J. Clim. 22 (24), 6577-6596.
- [35] Sharma, R., Agarwal, N., Basu, S., Agarwal, V. K., 2007. Impact of satellite-derived forcings on numerical ocean model simulations and study of sea surface salinity variations in the Indian Ocean. J. Climate 20 (5), 871-890.
- [36] Shenoi, S. S. C., Shankar, D., Shetye, S. R., 2002. Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: implications for the summer monsoon. J. Geophys. Res. – Oceans 107 (C6), http://dx.doi.org/10.1029/2000JC000679.
- [37] Smith, W. H. F., Sandwell, D. T., 1997. Global seafloor topography from satellite altimetry and ship depth soundings. Science 277, 1957-1962.
- [38] Smyth, W. D., Moum, J. N., 2013. Marginal instability and deep cycle turbulence in the eastern equatorial Pacific Ocean. Geophys. Res. Lett. 40 (23), 6181-6185.
- [39] Sreenivas, P., Patnaik, K. V. K. R. K., Prasad, K. V. S. R., 2008. Monthly variability of mixed layer over Arabian Sea using ARGO data. Mar. Geod. 31 (1), 17-38.
- [40] Vinayachandran, P. N., Jahfer, S., Nanjundiah, R. S., 2015. Impact of river runoff into the ocean on Indian summer monsoon. Environ. Res. Lett. 10 (5), 054008.
- [41] Wajsowicz, R., 2002. Air-sea interaction over the Indian Ocean due to variations in the Indonesian Throughflow. Clim. Dyn. 18 (5), 437-453.
- [42] Wang, Y., Liu, P., Li, T., Fu, Y., 2011. Climatologic comparison of HadISST1 and TMI sea surface temperature datasets. China Earth Sci. 54 (8), 1238-1247.
- [43] Weller, R. A., Fischer, A. S., Rudnick, D. L., Eriksen, C. C., Dickey, T. D., Marra, J., Leben, R., 2002. Moored observations of upper-ocean response to the monsoons in the Arabian Sea during 1994-1995. Deep-Sea Res. Pt. II 49 (12), 2195-2230.
- [44] Wentz, F. J., 2015. A 17-yr climate record of environmental parameters derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager. J. Clim. 28, 6882-6902.
- [45] Zhang, K. Q., Marotzke, J., 1999. The importance of open-boundary estimation for an Indian Ocean GCM-data synthesis. J. Mar. Res. 57, 305-334.
- [46] Zhang, Y., Du, Y., 2012. Seasonal variability of salinity budget and water exchange in the northern Indian Ocean from HYCOM assimilation. Chin. J. Oceanol. Limnol. 30 (6), 1082-1092.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b637e3fa-ab1a-44a4-804d-428b9ebda30f