PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface properties of the doped silica hydrophobic coatings deposited on plasma activated glass supports

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses preparation and characteristics of silica hydrophobic layers deposited on the plasma-modified glass supports. The surfaces were investigated using wettability measurements, profilometry, photoacoustic and infrared spectroscopy, X-ray photoelectron spectroscopy as well as scanning electron microscopy. The wettability measurements showed that the obtained surfaces are hydrophobic – the water contact angle was in the range of 140-150 degrees. The photoacoustic and infrared spectroscopy as well as X-ray photoelectron spectroscopy disclosed the surface compositions, particularly that of the hydrophobic alkyl groups deposited on them. They were methyl groups introduced during hydrophobization by hexamethyldisilazane. In addition, it was found that the number of groups on the surface depends on the kind of plasma by which the supports were activated. The optical profilometer showed differences in the surface roughness which affects their hydrophobicity. Moreover, the surface free energies were determined using the contact angle hysteresis method. They disclosed differences in each surface, depending on the way of supports activation. The largest hydrophobicity was obtained on the layer deposited on the support activated by the argon plasma. However, support activation by the air plasma resulted in a decrease of hydrophobicity compared to that of the non-activated surface.
Słowa kluczowe
Rocznik
Strony
1450--1459
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Department of Interfacial Phenomena, Maria Curie-Sklodowska University in Lublin, M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
  • Department of Interfacial Phenomena, Maria Curie-Sklodowska University in Lublin, M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
  • Chuiko Institute of Surface Chemistry NASU, 17 General Naumov Str., Kyiv 03164, Ukraine
Bibliografia
  • ARASE, H., TANIGUCHI, K., KAI, T., MURAKAMI, K., ADACHI, Y., OOYAMA, Y., KUNUGI, Y., OHSHITA, J., 2019. Hydrophobic modification of SiO2 surface by aminosilane derivatives. Compos. Interface. 26, 15-25.
  • BOGUSH, G.H., TRACY, M.A., ZUKOSKI, C.F., 1988. Preparation of monodisperse silica particles: Control of size and mass fraction. J. Non-Cryst. Solids 104, 95-106.
  • CHIBOWSKI, E., 2003. Surface free energy of a solid from contact angle hysteresis. Adv. Colloid Interface Sci. 103, 149-172.
  • CHIBOWSKI, E., 2007. On some relations between advancing, receding and Young’s contact angles. Adv. Colloid Interface Sci. 133, 149-172.
  • INNOCENZI, P., 2016. The Sol to Gel Transition, Springer, Alghero, Italy.
  • ITO, R., MORISATO, K., KANAMORI, K., NAKANISHI, K., 2019. Preparation of surface-coated macroporous silica (core-shell silica monolith) for HPLC separations. J. Sol-Gel Sci. Technol. 90, 105-112.
  • JIANG, C., LIU, W., SUN, Y., LIU, C., YANG, M., WANG, Z., 2019. Fabrication of durable superhydrophobic and superoleophilic cotton fabric with fluorinated silica sol via sol-gel process. J. Appl. Polym. Sci. 136, 47005.
  • LI, Y., HE, J., ZHANG, K., LIU, T., HU, Y., CHEN, X., WANG, C., HUANG, X., KONG, L., LIU, J., 2019. Super rapid removal of copper, cadmium and lead ions from water by NTA-silica gel. RSC Adv. 9, 397-407.
  • LIN, D., ZENG, X., LI, H., LAI, X., WU, T., 2019. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction. J. Colloid Interf. Sci. 533, 198-206.
  • McDONAGH, C., SHERIDAN, F., BUTLER, T., MACCRAITH, B.D., 1995. Characterisation of sol-gel-derived silica films. J. Non-Cryst. Solids 194, 72-77.
  • McHALE, G., SHIRTCLIFFE, N.J., NEWTON, M.I., 2004. Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir 20, 10146-10149.
  • MILEA, C.A., BOGATU, C., DUTA, A., 2011. The influence of parameters in silica sol-gel process. Bull. Trans. Univer. Braşov, ser. I: Eng. Sci. 4, 59-66.
  • PALLA-RUBIO, B., ARAÚJO-GOMES, N., FERNÁNDEZ-GUTIÉRREZ, M., ROJO, L., SUAY, J., GURRUCHAGA, M., GOÑI, I., 2019. Synthesis and characterization of silica-chitosan hybrid materials as antibacterial coatings for titanium implants. Carbohydr. Polym. 203, 331-341.
  • KLONOS, P.A., GONCHARUK, O.V., PAKHLOV, E.M., STERNIK, D., DERYŁO-MARCZEWSKA, A., KYRITSIS, A., GUN’KO, V.M., PISSIS, P., 2019. Morphology, molecular dynamics, and interfacial phenomena in systems based on silica modified by grafting polydimethylsiloxane chains and physically adsorbed polydimethylsiloxane. Macromolecules 52, 2863-2877.
  • PIERRE, A.C., 2019. From random glass networks to random silica gel networks and their use as host for biocatalytic applications. J. Sol-Gel Sci. Techn. 90, 172-186.
  • PISCITELLI, F., TESCIONE, F., MAZZOLA, L., BRUNO, G., LAVORGNA, M., 2019. On a simplified method to produce hydrophobic coatings for aeronautical applications. Appl. Surf. Sci. 472, 71-81.
  • ONAMOREVA, O.N., LAVROVA, D.G., KAMANINA, O.A., RYBOCHKIN, P.V., MACHULIN, A.V., ALFEROV, V.A., 2019. Biohybrid of methylotrophic yeast and organically modified silica gels from sol–gel chemistry of tetraethoxysilane and dimethyldiethoxysilane. J. Sol-Gel Sci. Techn., 1-8 (https://doi.org/10.1007/s10971-019- 04967-8).
  • PROTSAK, I., TERTYKH, V., PAKHLOV, E., DERYLO-MARCZEWSKA, A., 2017. Modification of fumed silica surface with mixtures of polyorganosiloxanes and dialkyl carbonates. Prog. Org. Coat. 106, 163-169.
  • PROTSAK, I.S., GUN’KO, V.M., HENDERSON, I.M., PAKHLOV E.M., STERNIK, D., LE, Z., 2019. Nanostructured amorphous silicas hydrophobized by various pathways. ACS Omega 4, 13863-13871.
  • STÖBER, W., FINK, A., BOHN, E., 1968. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci. 26, 62-69.
  • SULEJMANOVIĆ, J., ŠABANOVIĆ, E., BEGIĆ, S., MEMIĆ, M., 2018. Molybdenum(VI) oxide-modified silica gel as a novel sorbent for the simultaneous solid-phase extraction of eight metals with determination by flame atomic absorption spectrometry. Anal. Lett. 52, 588-601.
  • WANG, Z., YANG, W., SUN, F., ZHANG, P., HE, Y., WANG, X., LUO, D., MA, W., GONZALEZ-CORTES, S., 2019. Construction of a superhydrophobic coating using triethoxyvinylsilane-modified silica nanoparticles. Surf. Eng. 35, 418-425.
  • ZHAO, Y., LI, J., HU, J., SHU, L., SHI, X., 2011. Fabrication of super-hydrophobic surfaces with long-term stability. J. Dispers. Sci. Technol. 32, 969-974.
  • ZHI, D., WANG, H., JIANG, D., PARKIN, I.P., ZHANG, X., 2019. Reactive silica nanoparticles turn epoxy coating from hydrophilic to super-robust superhydrophobic. RSC Adv. 9, 12547-12554.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6371469-07f6-47b8-b8e0-f8856af83173
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.