PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of high-speed angular ball bearing lubrication based on bi-directional fluid-solid coupling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The lubrication of angular contact ball bearings under high-speed motion con- ditions is particularly important to the working performance of rolling bearings. Combining the contact characteristics of fluid domain and solid domain, a lubrication calculation model for angular contact ball bearings is established based on the RNG 𝑘-𝜀 method. The pressure and velocity characteristics of the bearing basin under the conditions of rotational speed, number of balls and lubricant parameters are analyzed, and the lubrication conditions and dynamics of the angular contact ball bearings under different working conditions are obtained. The results show that the lubricant film pressure will rise with increasing speed and viscosity of the lubricant. The number of balls affects the pressure and velocity distribution of the flow field inside the bearing but has a small effect on the values of the characteristic parameters of the bearing flow field. The established CFD model provides a new approach to study the effect of fluid flow on bearing performance in angular contact ball bearings.
Rocznik
Tom
Strony
531--551
Opis fizyczny
Bibliogr. 15 poz., wykr, tab.
Twórcy
autor
  • School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, China
autor
  • School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, China
  • School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, China
  • School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, China
autor
  • School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, China
  • Luoyang Bearing Research Institute Co., Ltd, Luoyang, China
Bibliografia
  • [1] B. Yan, L. Dong, K. Yan, F. Chen, Y. Zhu, and D. Wang. Effects of oil-air lubrication methods on the internal fluid flow and heat dissipation of high-speed ball bearings. Mechanical Systems and Signal Processing, 151:107409, 2021. doi: 10.1016/j.ymssp.2020.107409.
  • [2] H. Bao, X. Hou, X. Tang, and F. Lu. Analysis of temperature field and convection heat transfer of oil-air two-phase flow for ball bearing with under-race lubrication. Industrial Lubrication and Tribology, 73(5):817–821, 2021. doi: 10.1108/ilt-03-2021-0067/v2/decision1.
  • [3] T.A. Harris. Rolling Bearing Analysis. Taylor & Francis Inc. 1986.
  • [4] T.A. Harris and M.N. Kotzalas. Advanced Concepts of Bearing Technology. Taylor & Francis Inc. 2006.
  • [5] F.J. Ebert. Fundamentals of design and technology of rolling element bearings. Chinese Journal of Aeronautics, 23(1):123-136, 2010. doi: 10.1016/s1000-9361(09)60196-5.
  • [6] T.A. Harris. An analytical method to predict skidding in high speed roller bearings. A S L E Transactions, 9(3):229–241, 1966. doi: 10.1080/05698196608972139.
  • [7] A. Wang, S. An, and T. Nie. Analysis of main bearings lubrication characteristics for diesel engine. In: IOP Conference Series: Materials Science and Engineering, 493(1):012135, 2019. doi: 10.1088/1757-899X/493/1/012135.
  • [8] W. Zhou, Y. Wang, G. Wu, B. Gao, and W. Zhang. Research on the lubricated characteristics of journal bearing based on finite element method and mixed method. Ain Shams Engineering Journal, 13(4):101638, 2022. doi: 10.1016/j.asej.2021.11.007.
  • [9] J. Chmelař, K. Petr, P. Mikeš, and V. Dynybyl. Cylindrical roller bearing lubrication regimes analysis at low speed and pure radial load. Acta Polytechnica, 59(3):272–282, 2019. doi: 10.14311/AP.2019.59.0272.
  • [10] C. Wang, M. Wang, and L. Zhu. Analysis of grooves used for bearing lubrication efficiency enhancement under multiple parameter coupling.Lubricants, 10(3):39, 2022. doi: 10.3390/lu- bricants10030039.
  • [11] Z. Xie and W. Zhu. An investigation on the lubrication characteristics of floating ring bearing with consideration of multi-coupling factors. Mechanical Systems and Signal Processing, 162:108086, 2022. doi: 10.1016/j.ymssp.2021.108086.
  • [12] M. Almeida, F. Bastos, and S. Vecchio. Fluid–structure interaction analysis in ball bearings subjected to hydrodynamic and mixed lubrication. Applied Sciences, 13(9):5660, 2023. doi:10.3390/app13095660.
  • [13] J. Sun, J. Yang, J. Yao, J. Tian, Z. Xia, H. Yan, and Z. Bao. The effect of lubricant viscosity on the performance of full ceramic ball bearings. Materials Research Express, 9(1):015201, 2022. doi: 10.1088/2053-1591/ac4881.
  • [14] D.Y. Dhande and D.W. Pande. A two-way FSI analysis of multiphase flow in hydrodynamic journal bearing with cavitation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39:3399–3412, 2017. doi: 10.1007/s40430-017-0750-8.
  • [15] H. Liu, Y. Li, and G. Liu. Numerical investigation of oil spray lubrication for transonic bearings. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40:401, 2018. doi: 10.1007/s40430-018-1317-z.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b63681ec-9a78-4876-98b8-d145302445be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.