Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Corrosion-resistant steels form an important group of structural materials who’s mechanical and corrosion-resistant properties are an irreplaceable part of the engineering industry. Despite their designation as "stainless steel", it is necessary to consider that even these steels can be subject to various types of corrosion attack under certain conditions. The article presents the effect of a controlled protective nitrogen atmosphere on X5CrNi18-10 steel, which is used to produce auxiliary components in the automotive industry. Steel X5CrNi18-10 is not only subject to corrosion after a short time (2hr) in a nitrogen atmosphere, at a temperature of 570 to 630°C, but at the same time the mechanical properties also change. Nitrogen atmosphere is used in heat treatment in automotive and X5CrNi18-10 steel is often used in these conditions as an auxiliary material, e.g. base grid. One test for X5CrNi18-10 steel was that the samples were exposed to a nitrogen atmosphere at various temperatures and then the agreed yield stress Rp0.2, hardness and microstructure were evaluated. The second test was the evaluation of the frame made of the given steel at 630°C. The testing took place in a continuous furnace. Temperatures above 500°C significantly changes the material's features.
Czasopismo
Rocznik
Tom
Strony
69--75
Opis fizyczny
Bibliogr. 32 poz., il., tab., wykr.
Twórcy
autor
- University of Žilina, Slovak Republic
Bibliografia
- [1] Krajewski, S.J., Gutsche, W. & Urbanowicz, K. (2023). Analysis of X5CrNi18-10 (AISI 304) steel susceptibility to hot cracking in welded joints based on determining the range of high-temperature brittleness and the nil-strength temperature. Metals. 13(10), https://doi.org/10.3390/met13101633. 1633, 1-19.
- [2] Zalecki, W., Wrozyna, A., Łapczynski, Z. & Molenda, R. (2016). Influence of Microstructure on Some Properties of AHSS Steels. Journal of Matallic Materials. 68, 19-25. (in Polish).
- [3] Kurc-Lisiecka, A., Ozgowicz, W., Kalinowska-Ozgowicz, E. & Maziarz, W. (2016). The microstructure of metastable austenite in X5CrNi18- 10 steel after its strain-induced martensitic transformation. Material in Technologije. 50(6), 837-843.
- [4] Vaško, A. (2014). Fatigue life of synthetic nodular cast irons at high frequency loading. Scientific Papers of the University of Pardubice Series B. 19, 121-128.
- [5] Fojt-Dymara, G., Opiela, M. & Borek, W. (2022). Susceptibility of High-Manganese Steel to High Temperature Cracking. Materials. 15(22), 8198, 1-12. https://doi.org/10.3390/ma15228198.
- [6] Kawulok, R., Schindler, I., Navrátil, H., Ševčák, V., Sojka, J., Koneˇcná, K. & Chmiel, B. (2020). Hot formability of heat resistant stainless steel X15CrNiSi20-12. Archives of Metallurgy and Materials. 10.24425/amm.2020.132812. 65, 727-734. DOI:
- [7] Švec, P. (2010). Construction materials. STU Bratislava. ISBN 978-80-227-3386-1.
- [8] Siddique, A.G., Vijaya, R.B., Elanchezhian, C., Siddhartha, D. & Ramanan, N. (2019). Analysis of the friction welding mechanism of low carbon steel–stainless steel and aluminium-copper. Materials Today: Proceedings. 16, 766 775. https://doi.org/10.1016/j.matpr.2019.05.157.
- [9] Kawulok, P., Schindler, I., Smetana, B., Moravec, J., Mertová, A., Drozdová, L’., Kawulok, R., Opěla, P. & Rusz, S. (2020). The relationship between nil-strength temperature, zero strength temperature and solidus temperature of carbon steels. Metals. 10(3), https://doi.org/10.3390/met10030399. 399, 1-14.
- [10] Skočovský, P., Bokuvka, O., Konečná, R. & Tillová, E (2014). Material Science. EDIS - vydavateľstvo Žilinskej univerzity, 349. ISBN 978-80-554-0871-2. (in Slovak).
- [11] Macek, W., Pejkowski, Ł., Branco, R., Nejad, R.M. & Zak, K. (2022). Fatigue fracture surface metrology of thin-walled tubular austenitic ˙ steel specimens after asynchronous loadings. Engineering Failure Analysis. 138, 106354. https://doi.org/10.1016/j.engfailanal.2022.106354.
- [12] Adamiec, J. (2023). Assessment of the hot-cracking susceptibility of welded joints of the 7CrMoVTiB10-10 bainitic steel used in heat exchangers. Energies. 16(1), 162, 1-21. https://doi.org/10.3390/en16010162.
- [13] Dossett, J., Boyer, H. (2006). Practical Heat Treating. Second Edition. Ohio: ASM International. ISBN: 0-87170 829-9.
- [14] Kocich, J., Tuleja, S. (1983). Corrosion and protection of metals. Bratislava: Alfa.
- [15] Rajasekhara, S., Karjalainen, L.P., Kyröläinen, A. & Ferreira, P.J. (2010). Microstructure evolution in nano/submicron grained AISI 301LN stainless steel. Materials Science and Engineering. 527A, 1986–1996. DOI:10.1016/j.msea.2009.11.037. https://doi.org/10.1016/j.msea.2009.11.037.
- [16] Blicharski, M. & Gorczyca, S. (1979). Structural inhomogeneity of deformed austenitic stainless steel. Metal Science. 12(7), 303-312. DOI:10.1179/msc.1978.12.7.303.
- [17] Fabian, P., Kečková, E., Beták, P. (2007). Heat treatment of metals. Svidník: Tlačiareň svidnícka, s.r.o. ISBN 978-80 969592-7-3.
- [18] Lee, W.S. & Lin, C.F. (2000). The morphologies and characteristics of impact-induced martensite in 304L stainless steel. Scripta Materialia. 43(8), 777-782. DOI:10.1016/S1359-6462(00)00487-5.
- [19] Das, A., Sivaprasad, S., Ghosh, M., Chakraborti, P.C. & Tarafder, S. (2008). Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel. Materials Science and Engineering. 486A DOI:10.1016/j.msea.2007.09.005. (1-2), 283-286.
- [20] Skočovský, P., Durmis, I. (1984). Technology of heat treatment of metals. Bratislava: ALFA.
- [21] Abid, M, Nash, D.H., Javed, S. & Wajid, H.A. (2018). Performance of a gasketed joint under bolt up and combined pressure, axial and thermal loading – FEA study. International Journal of Pressure Vessels and Piping. 168, 166-173. https://doi.org/10.1016/j.ijpvp.2018.10.014.
- [22] Moravec, J., Jančušová, M., Kuba, J., Stroka, R. (2010). Technology of forming technical materials. Edis. ISBN 978 80-554-0220-9.
- [23] Pfann, W.G. (1963). Zone melting. New York: John Wiley and sons.
- [24] Tillová, E., Kucharikova, L., Belan, J. (2020). Steels with special properties - anti-corrosion steels. 2020. http://kmi2.uniza.sk/wp-content/uploads/2020/01/1_Obsah %C3%9Avod-2.pdf.
- [25] Dorazil, E. et.al. (1979). Material science II. Brno. ISBN: 55-600-79.
- [26] Pluhar, J., Koritta, J. (1966). Engineering materials. SNTL Publishing house of technical literature. Praha.
- [27] Albaharna, O.T., Argyropoulos, S.A. (1988). Artificial intelligence for materials processing and process control.Journal of Metals. 40(10), 6-10. https://doi.org/10.1007/BF03257973.
- [28] Davis, J.R. (1994). Stainless steels. Chagrin falls: ASM international. ISBN 0-87170-503-6
- [29] Bernasovský, P. (2017). Atypical Cases of Welded Structure Failures. Solid State Phenomena. 270, 86-92.
- [30] Martinec, J., Šveidler, Z., Janovec, J. (2014). Corrosion resistant materials - basic types of steel and recommendations for their weldability. Retrieved Marcg, 8, 2023 from http://old.konstrukce.cz/clanek/korozivzdorne materialy-zakladni/typy-oceli-a-doporuceni-projejich svaritelnost/
- [31] Brenner, O. (2003). Corrosion-resistant steels as structural materials. Retrieved April, 2, 2023 from https://www.mmspektrum.com/clanek/korozivzdorne/oceli jako-konstrukcni-materialy.
- [32] Bahrami, A., Taheri, P. (2019). A study on the failure of AISI 304 stainless steel tubes in a gas heater unit. Metals. 9(9), 969. 1-7. https://doi.org/10.3390/met9090969.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6326cde-84fa-45fc-bc74-45e441d1389e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.