Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In Antarctica, studying the near-surface wind regime is important because its dynamics directly affect the continent’s ice shelves. The nearsurface wind is also important for analyzing global and regional climate. Vernadsky Station has a fairly long observation series of nearsurface wind speed. These data are widely used to research changes, variability, and trends in the near-surface wind regime on the Antarctic Peninsula. The observation series, however, has gaps and incorrect values associated with periodical updates of measurement devices. Thus, the observation data require careful evaluation of homogeneity and stationarity. The objective of this study was to investigate the homogeneity, stationarity, and tendencies of the near-surface wind speed in the area of the Vernadsky Station based on a combined approach using several statistical and graphical methods. The methods’ diverse properties support more robust estimates. Consequently, five statistical tests (standard normal Alexandersson test, Buishand test, Pettitt test, von Neumann relation, and Mann-Kendall test) and three graphical methods (chronological graph, mass curve, and residual mass curve) were employed. Most of the observation series is homogeneous and stationary, except the mean annual and February mean monthly near-surface wind speeds, which display both decreasing and increasing phases in their long-term cyclical fluctuations, which are continuing. Violation of homogeneity and stationarity results from the comparison of different phases of cyclic fluctuations (decrease and increase), which have different statistical characteristics. We show that over the past 20 years at the station, the near-surface wind speed has tended to increase in all months of the year.
Słowa kluczowe
Rocznik
Tom
Strony
58--73
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- Ukrainian Hydrometeorological Institute
autor
- Ukrainian Hydrometeorological Institute
autor
- Ukrainian Hydrometeorological Institute
autor
- National Antarctic Scientific Center of Ukraine
Bibliografia
- Alkama R., Koffi E.N., Vavrus S.J., Diehl T., Francis J.A., Stroeve J., Forzieri G., Vihma T., Cescatti A., 2020, Wind amplifies the polar sea ice retreat, Environmental Research Letters, 15, 124022, DOI: 10.1088/1748-9326/abc379.
- Andres-Martin M., Azorin-Molina C., Serrano E., González-Herrero S., Guijarro J.A., Bedoya-Valestt S., Utrabo-Carazo E., Vicente Serrano S.M., 2024, Near-surface wind speed trends and variability over the northern Antarctic Peninsula, 1979-2022, Atmospheric Research, 309, 107568, DOI: 10.1016/j.atmosres.2024.107568.
- Box G.E.P., Jenkins G.M., 1970, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, 553 pp.
- de Brito Neto F.A., Mendes D., Spyrides M.H.C., 2022, Analysis of extreme wind events in the Weddell Sea region (Antarctica) at Belgrano II Station, Journal of South American Earth Sciences, 116, 103804, DOI: 10.1016/j.jsames.2022.103804.
- Dong X., Wang Y., Hou S., Ding M., Yin B., Zhang Y., 2020, Robustness of the recent global atmospheric reanalyses for Antarctic nearsurface wind speed climatology, Journal of Climate, 33 (10), 4027-4043, DOI: 10.1175/JCLI-D-19-0648.1.
- Ehlert K.W., 1972, Homogeni tets kontroll av hydrologiska tidsserier, (in Swedish), Nordisk Hydrologisk Konferanse, Sandefjord, 47-59, available online (data access 19.03.2025).
- Gorbachova L.O., 2014, Methodical approaches the assessment of the homogeneity and stationarity of hydrological observation series, (in Ukrainian), Hydrology, Hydrochemistry and Hydroecology, 1 (32), 22-31.
- Gorbachova L.O., 2016, Place and role of hydro-genetic analysis among modern research methods runoff, (in Ukrainian), Proceedings of Ukrainian Hydrometeorological Institute, 268, 73-81.
- Gorbachova L., Khrystiuk B., Shpyg V., Pishniak D., 2022, Estimation of tendencies, homogeneity and stationarity of air temperature at the Ukrainian Antarctic Akademik Vernadsky station during 1951-2020, Geofizicheskiy Zhurnal, 44 (4), 183-194, DOI: 10.24028/gj.v44i4.264848.
- Gorbachova L., Zabolotnia T., Khrystyuk B., 2018, Homogeneity and stationarity analysis of the snow-rain floods in the Danube basin within Ukraine, Acta Hydrologica Slovaca, 19 (1), 35-41.
- Gorton A.F., 1931, Cyclical variations in precipitation, runoff, and lake-levels and their relation to long-range forecasting, Eos, Transactions American Geophysical Union, 12 (1), 88-90, DOI: 10.1029/tr012i001p00088.
- Hazel J.E., 2019, Exploring the Wind-Driven Near-Antarctic Circulation, Doctoral dissertation, University of California, Los Angeles, available online https://escholarship.org/uc/item/1gs7z5zm (data access 19.03.2025).
- Karl T.R., 1988, Multi-year fluctuations of temperature and precipitation: The gray area of climate change, Climatic Change, 12, 179-197, DOI: 10.1007/BF00138938.
- Khrystiuk B., Gorbachova L., 2023, Spatial-temporal tendencies of the ice regime of the Dnipro Cascade reservoirs, (in Ukrainian), Visnyk of V.N. Karazin Kharkiv National University, Series „Geology. Geography. Ecology”, 59, 249-259, DOI: 10.26565/2410-7360-2023-59-18.
- Khrystiuk B., Gorbachova L., Shpyg V., Pishniak D., 2023, Changes in extreme temperature indices at the Ukrainian Antarctic Akademik Vernadsky station, 1951-2020, Meteorology Hydrology and Water Management, 10 (1), 95-106, DOI: 10.26491/mhwm/150883.
- King J.C., Turner J., 1997, Antarctic Meteorology and Climatology, Cambridge University Press, 409 pp.
- Klemeš V., 1987, One hundred years of applied storage reservoir theory, Water Resources Management, 1, 159-175, DOI: 10.1007/BF00429941.
- Klok S.V., Kornus A.O., 2021, Intra-annual and long-periodic components in the changes of precipitation over the Antarctic Peninsula and their possible causes, Journal of Geology, Geography and Geoecology, 30 (3), 490-490, DOI: 10.15421/112144.
- Kohler M.A., 1949, On the use of double-mass analysis for testing the consistency of meteorological records and for making required adjustments, Bulletin of the American Meteorological Society, 30, 188-195, DOI: 10.1175/1520-0477-30.5.188.
- Kundzewicz Z.W., Robson A.J., (eds.), 2000, Detecting Trend and Other Changes in Hydrological Data, World Climate Programme Data and Monitoring, WCDMP-45, WMO/TD-No. 1013, World Meteorological Organization, Geneva.
- Kundzewicz Z.W., Robson A.J., 2004, Change detection in hydrological records - a review of the methodology, Hydrological Sciences Journal, 49 (1), 7-19, DOI: 10.1623/hysj.49.1.7.53993.
- van Lipzig N.P.M., King J.C., Lachlan-Cope T.A., van den Broeke M.R., 2004, Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model, Journal of Geophysical Research: Atmospheres, 109 (D24), DOI: 10.1029/2004JD004701.
- Merriam C.F., 1937, A comprehensive study of the rainfall on the Susquehanna Valley, Transactions American Geophysical Union, 18 (2), 471-476, DOI: 10.1029/TR018i002p00471.
- Nidzgorska-Lencewicz J., Czarnecka M., 2019, Cyclical variability of seasonal precipitation in Poland, Quarterly Journal of the Hungarian Meteorological Service, 123 (4), 455-468, DOI: 10.28974/idojaras.2019.4.3.
- Novotný J., 1925, Hydrology, (in Czech), Ceská matice technická, Prague.
- Parish T.R., 1988, Surface winds over the Antarctic continent: A review, Reviews of Geophysics, 26 (1), 169-180, DOI: 10.1029/RG026i001p00169.
- Parish T.R., Cassano J.J., 2001, Forcing of the wintertime Antarctic boundary layer winds from the NCEP-NCAR Global Reanalysis, Journal of Applied Meteorology and Climatology, 40 (4), 810-821, DOI: 10.1175/1520-0450(2001)0402.0.CO;2.
- Pekárová P., Miklánek P., Pekár J., 2003, Spatial and temporal runoff oscillation analysis of the main rivers of the world du ring the 19th20th centuries, Journal of Hydrology, 274 (1-4), 62-79, DOI: 10.1016/S0022-1694(02)00397-9.
- R Core Team, 2017, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available online at https://www.r-project.org/ (data access 02.04.2025).
- Ramesh K.J., Soni V.K., 2018, Perspectives of Antarctic weather monitoring and research efforts, Polar Science, 18, 183-188, DOI: 10.1016/j.polar.2018.04.005.
- Rippl W., 1883, The capacity of storage reservoirs for water supply, Minutes of the Proceedings of the Institute of Civil Engineers, 71 (1883), 270-278, DOI: 10.1680/imotp.1883.21797.
- Robson A.J., 2002, Evidence for trends in UK flooding, Philosophical Transactions of the Royal Society A, 360 (1796), 1327-1343, DOI: 10.1098/rsta.2002.1003.
- Romanova Y., Shakirzanova Z., Ovcharuk V., Todorova O., Medvedieva I., Ivanchenko A., 2019, Temporal variation of water discharges in the lower course of the Danube River across the area from Reni to Izmail under the influence of natural and anthropogenic factors, Energetika, 65 (2-3), 144-160, DOI: 10.6001/energetika.v65i2-3.4108.
- dos Santos L.O.F., Machado N.G., Biudes M.S., Geli H.M.E., Querino C.A.S., Ruhoff A.L., Ivo I.O., Lotufo Neto N., 2023, Trends in precipitation and air temperature extremes and their relationship with sea surface temperature in the Brazilian midwest, Atmosphere, 14 (3), 426, DOI: 10.3390/atmos14030426.
- Searcy J.K., Hardison C.H., 1960, Double-Mass Curves. Manual of Hydrology: Part 1. General Surface-Water Techniques, Geological Survey Water-Supply Paper 1541-B, Washington, United States Government Printing Office.
- Schoklitsch A., 1923, Graphical Hydraulics, (in German), B.G. Teubner, Leipzig.
- Shpyg V., Shchehlov O., Pishniak D., 2024, Snow cover at the Akademik Vernadsky station: response on wind, temperature and precipitation variations, Ukrainian Antarctic Journal, 22 (1), 6-23, DOI: 10.33275/1727-7485.1.2024.724.
- Spence P., Griffies S.M., England M.H., Hogg A.McC., Saenko O.A., Jourdain N.C., 2014, Rapid subsurface warming and circulati on changes of Antarctic coastal waters by poleward shifting winds, Geophysical Research Letters, 41 (13), 4601-4610.
- Stehr N., Storch H., (eds.), 2000, Eduard Brückner - The Sources and Consequences of Climate Change and Climate Variability in Historical Times, Kluwer Academic Publishers.
- Turner J., Chenoli S.N., Samah A., Marshall G., Phillips T., Orr A., 2009, Strong wind events in the Antarctic, Journal of Geophysical Research: Atmospheres, 114 (D18), D18103, DOI: 10.1029/2008JD011642.
- Tymofeyev V.E., Beznoshchenko B.O., Shcheglov O.A., 2017, On the near-surface atmospheric circulation in the region of the Antarctic Peninsula, (in Russian), Ukrainian Antarctic Journal, 16, 66-80, DOI: 10.1016/S0045-8732(97)83155-5.
- Wang K.-S., Wu D., Zhang T., Wu K., Zheng C.-W., Yi C.-T., Yu Y., 2023, Climatic trend of wind energy resource in the Antarctic, Journal of Marine Science and Engineering, 11 (5), 1088, DOI: 10.3390/jmse11051088.
- Weiss L.L., Wilson W.T., 1953, Evaluation of significance of slope changes in double mass curves, Transactions American Geophysical Union, 34 (6), 893-896, DOI: 10.1029/TR034i006p00893.
- WMO, 1990, On the Statistical Analysis of Series of Observations, Technical Note No. 143, WMO-No. 415, World Meteorological Organization, Geneva.
- WMO, 2018, Guide to Climatological Practices, WMO-No. 100, World Meteorological Organization, Geneva.
- Yu L., Zhong Sh., Sun B., 2020, The climatology and trend of surface wind speed over Antarctica and the Southern Ocean and the implication to wind energy application, Atmosphere, 11 (1), DOI: 10.3390/atmos11010108.
- Zabolotnia T., Gorbachova L., Khrystyuk B., 2019, Estimation of the long-term cyclical fluctuations of snow-rain floods in the Danube basin within Ukraine, Meteorology Hydrology and Water Management, 7 (2), 3-11, DOI: 10.26491/mhwm/99752.
- Zabolotnia T., Parajka J., Gorbachova L., Széles B., Blöschl G., Aksiuk O., Tong R., Komma J., 2022, Fluctuations of Winter F loods in Small Austrian and Ukrainian Catchments, Hydrology, 9 (2), 38, DOI: 10.3390/hydrology9020038.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b62d5763-6561-43b0-9bd4-3a3607da2045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.