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A quick and cost-effective method for monitoring
deforestation of oil sands mining activities using
synthetic aperture radar and multispectral real-time
satellite data from Sentinel-1 and Sentinel-2

J. Garcia-del-Real*, M. Alcaraz

Polytechnic University of Cartagena, Mining and Civil Engineering, Cartagena, Spain

Abstract

Alberta’s oil sands mining operations rank among the largest human-made structures globally. Monitoring through
the use of Synthetic Aperture Radar (SAR) and Multispectral satellite imaging is an indispensable strategy in attaining
sustainable development and mitigating deforestation in the third-largest verified oil reserves worldwide. This paper
introduces a novel approach for cost-effective and reliable monitoring of deforestation caused by oil sands mining,
avoiding cumbersome methods. It focuses on observing forest/non-forest areas affected by Suncor Energy Company’s
mining assets in Alberta, using a combination of SAR and Multispectral satellite remote sensing. Radar images from
Sentinel-1B and Multispectral images from Sentinel-2A were analyzed with SNAP 8.0 and QGIS within a time series
from June 2017 to June 2020, providing detailed information to monitor better the potential environmental impact of oil
sands mining activities in Canada. The Sentinel satellite system offers several advantages, including near-global
coverage, elevated spatial resolution for detecting small-scale deforestation instances, and the ability to track temporal
and dynamic changes through time-series analysis. Additionally, the system’s open data policy promotes accessibility,
collaboration among researchers, and innovative deforestation monitoring applications. The research results hold po-
tential value for decision-makers, enhancing the efficiency and sustainable development of Suncor’s mining operations.

Keywords: Oil sands, Synthetic aperture radar, Multispectral remote sensing, Deforestation, Sustainable development

1. Introduction

R emote sensing technology has been used in
the oil sands industry in Canada for several

decades. The oil sands, also known as tar sands, are
a type of unconventional oil deposit that is found
primarily in the province of Alberta. These deposits
are a mixture of sand, clay, water, and bitumen, a
heavy and viscous form of oil [1].
The oil sands industry in Canada is one of the

largest in the world, and the use of remote sensing
technology has been critical in its development.
Remote sensing technology has been used to map
the extent and distribution of the oil sands deposits,
as well as to monitor the environmental impacts of
oil sands development [2]. Early applications of
remote sensing in the oil sands included the use of

aerial photography and satellite imagery to map the
surface features of the oil sands deposits. This
allowed for the identification of areas that were
suitable for mining and extraction.
In recent years, the use of remote sensing tech-

nology in the oil sands has expanded to include the
use of satellite-based sensors, such as radar and
lidar, to map the subsurface geology of the oil sands
deposits [3]. This has helped to improve the accu-
racy of resource estimates and to optimize the
design of mining and extraction operations. This
technology has also been used to monitor the
environmental impacts of oil sands development,
such as the rate of vegetation loss, land surface
changes, and water quality [4].
In this line, deforestation is one of the most sig-

nificant environmental issues facing our planet
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today [5], and it has a wide range of negative im-
pacts on biodiversity, climate change, and human
populations [6]. According to some authors, the oil
sands mining industry could be considered a major
contributor to deforestation, as it requires the
removal of large areas of forest for mining activities
[7,8]. Traditional methods for monitoring defores-
tation in the oil sands mining region are costly and
time-consuming, making it difficult to accurately
measure and track the extent of deforestation [9].
Synthetic Aperture Radar (SAR) and multispectral

satellite data have proven to be effective tools for
monitoring deforestation in other regions [10]. SAR
uses radar waves to penetrate through clouds and
vegetation, providing detailed information about
the forest canopy and the underlying soil [11].
Multispectral satellite data, on the other hand, pro-
vides information about the reflectance of different
parts of the electromagnetic spectrum, which can be
used to identify the different types of vegetation and
land cover [12].
However, it is well-known that multispectral im-

agery technology may have some limitations
depending on the cloud coverage since, for instance,
clouds can block the view of the earth’s surface,
making it difficult to obtain data in certain areas and
pushing researchers to develop different technics to
remove their negative effects [13,14]. Another limi-
tation is the, Atmospheric Correction since
acquiring accurate information from multispectral
imagery requires correction for atmospheric effects,
such as absorption and scattering of light. These
corrections are complex and require knowledge of
the atmospheric conditions at the time of data
acquisition [15,16].
Therefore, Synthetic Aperture Radar (SAR) and

Multispectral real-time satellite data have a high
potential to monitor deforestation caused by oil
sands mining activities. SAR uses radar to create
detailed images of the earth’s surface, even through
cloud cover and darkness and can be useful to
detect changes in the landscape, such as deforesta-
tion. Multispectral data, on the other hand, uses
different wavelengths of light to capture information
about the earth’s surface and can be used to identify
specific types of vegetation, such as trees. Together,
SAR and multispectral data are key to monitoring
the extent and rate of deforestation caused by oil
sands mining activities, providing valuable infor-
mation for conservation efforts and sustainable
resource management.
On the other hand, the Multispectral data of

Sentinel-2 is, in this sense, notably advantageous.
Since it provides additional information, as for
instance, vegetation indices and land cover

classification [17], which can be key not only for
differentiating deforested regions but also for the
identification of diverse land cover types [18] and
the evaluation of the environmental implications of
mining activities. By merging SAR and Multispec-
tral data, a comprehensive perspective of the
deforestation procedure is presented.
In addition to the innovations and novelties

mentioned before in the field of environmental
monitoring, Sentinel 1 and Sentinel 2 provide near-
global coverage and regular imaging, allowing for
the monitoring of deforestation in remote and vast
areas. Hence, it is recommendable for oil sands
mining sites. This comprehensive coverage ensures
no significant changes go unnoticed, enabling
timely intervention and assessment. Furthermore,
due to their high spatial resolution imagery, the
combined use of both satellites allows the detection
and monitoring of other types of small-scale defor-
estation activities [19]. On top of that, it is worth
noting the change detection capability to capture
temporal changes, which enables the detection of
deforestation events over time. For instance, by
utilizing time-series analysis techniques, such as
interferometry or coherence analysis, it becomes
possible to monitor the progression and expansion
of deforestation activities associated with oil sands
mining activities.
Another important aspect that should be empha-

sized in this regard, is the enhanced Data accessi-
bility of Sentinel 1 and Sentinel 2. The open data
policy of the Sentinel satellites ensures free and
open access to SAR and Multispectral data, which
could be key to democratizing the availability of
monitoring tools [20], [21]. Moreover, this enhanced
accessibility fosters collaboration among re-
searchers, facilitates scientific research, and paves
the way for the development of innovative applica-
tions for deforestation monitoring.
A review of the literature found that the combi-

nation of SAR and multispectral satellite data has
the potential to provide a quick and cost-effective
method for monitoring deforestation [22] in the oil
sands mining region in almost all weather condi-
tions. Moreover, by using real-time satellite data, it
is possible to track changes in the forest canopy in
near real-time, providing valuable information for
decision-makers and conservationists.
Some investigations have evidenced the efficacy

of said methodologies in identifying and measuring
forest disruptions such as selective logging and
deforestation. For example, a new approach using
spaceborne SAR interferometry has been developed
to detect and quantify selective logging events,
providing accurate monitoring of height changes
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due to forest growth and degradation [23]. Addi-
tionally, a time-series model has been proposed to
characterize land cover change, reconstructing the
underlying continuous land change process from
satellite observations and deriving the timing, in-
tensity, and duration of deforestation [24]. Further-
more, for instance, a novel multispectral time series
change monitoring method combining dimension
reduction methods with a sequential hypothesis test
automatically selects a suitable index for deforesta-
tion monitoring and improves accuracy in the
presence of strong seasonality [25]. These studies
highlight the potential of time-series analysis tech-
niques for monitoring deforestation activities.
Another important aspect worth mentioning in

relation to surface soil moisture content and porosity
of deposits is the fact that Sentinel-1 and Sentinel-2
satellite systems could be utilized to analyze granular
and skeletal deposits. In fact, Synthetic Aperture
Radar (SAR) data obtained from Sentinel-1 actually
provides information on surface roughness [26,27],
which is very closely linked to porosity in granular
and skeletal deposits. By analyzing, for instance, the
distribution and variations of their backscatter in-
tensity values extracted from Sentinel 1 data, which
serve as indicator of the strength of the radar signal
returned from the surface. Higher values of back-
scatter intensity are usually associated with rougher
surfaces, which may indicate higher porosity in
granular and skeletal deposits.
In this sense, Sentinel-2’s multispectral data pro-

vides additional information about the spectral
reflectance of the Earth’s surface that, if the reflec-
tance patterns across different spectral bands are
duly analyzed, can help to identify the associated
variations with the porosity of the different types of
deposits. Furthermore, Vegetation indices, such as
the Normalized Difference Vegetation Index
(NDVI), could be used to indirectly provide insights
into a deposit’s porosity, for instance, by indicating
vegetation cover and health, which usually are as-
pects related to the presence of porous materials.
The utilization of SAR and multispectral infor-

mation from both satellites presents an advanta-
geous approach able to obtain the dispersion of
surface soil moisture (SSM) and the root mean
squared height (RMSH) in bare soils, thus lessening
the impact of surface roughness [28]. In this sense,
optical and radar data combined can help to
improve the accuracy of SSM and RMSH mea-
surements, with decreased root mean squared error
and increased retrieval accuracy when compared to
using single radar or optical data [29].
Correlation analysis between backscatter intensity

derived from SAR data and porosity measurements

could be performed to quantify a potential rela-
tionship between each other. The reflectance pat-
terns and vegetation indices obtained from
multispectral data have the potential to enhance the
SAR analysis by providing supplementary insights
about the porosity distribution in the deposits. Field
measurements and laboratory analyses of porosity
would also be very useful in this regards and could
be used to validate the results obtained from satel-
lite data analysis since the combination of both data
sources helps to get a better understanding of the
porosity characteristics and for validating the data
obtained. By doing so, the results could be inter-
preted to assess the suitability of the granular and
skeletal deposits and for various applications, such
as for example hydrological studies, construction
works, or mineral resource exploration, based on
their porosity properties.
Understanding the use of remote sensing tech-

nology to monitor these aspects is very important
for helping to minimize the environmental footprint
of oil sands development and to ensure that the
industry operates in an environmentally responsible
manner. In fact, the combined use of this technology
is crucial as a powerful tool in the exploration,
development and management of this important
resource. Thus, this research aims to investigate the
use of SAR and multispectral satellite data to
monitor deforestation in the oil sands mining
region, with the ultimate goal of developing a
cost-effective and reliable method for monitoring
deforestation in this area.
By combining two different approaches (SAR vs.

multispectral) for monitoring deforestation of oil
sands mining activities in Alberta Province in Can-
ada, the methodology of this study is designed to
explore the advantages of using these two remote
sensing technologies and focuses its investigation
on the mining assets owned by the Suncor Energy
company, which is the producer with the biggest
reserves of oil tars in Alberta province. Total forest
and deforested areas for the time period between
June 2017 and June 2020 were efficiently measured.
While Vegetation’s health was accurately measured,
and the Vegetation Spectral Reflectance Curve in
different regions of interest (ROIs) within the sur-
rounding areas close to the mining activities was
successfully calculated.
It is well proved worldwide the effectiveness of

multispectral and SAR technologies for monitoring
deforested areas. However, there is little recent
literature about its suitability for monitoring oil
sands mining activities in Alberta using Sentinel-1
and Sentinel-2 satellite data. Therefore, the study
encompasses the measurement of total forest and
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deforested areas, assessing vegetation health, for
which different tasks were carried out. With respect
to the methodology used in this study, it includes a
Synthetic Aperture Radar analysis and a supervised
Classification Process with a Random Forest algo-
rithm for measuring total forest and deforested
areas. After downloading SAR (Sentinel-1B) and
multispectral (Sentinel-2A) products, data was pre-
processed using software tools like SNAP and its
Graph Builder, conducting supervised classification
with Random Forest, post-processing data to
remove noise, exporting processed products for
visualization, and creating time series of deforested
areas, and obtaining also the confidence value of
classified Sentinel-1B SAR products using SNAP
and QGIS. Vegetation’s health was measured by
calculating the Normalized Difference Vegetation
Index (NDVI) and the Vegetation Spectral Reflec-
tance Curve of Sentinel-2A Multispectral optical
data for specific regions of interest in SNAP.
Forest and deforested areas were identified

accordingly, using images provided by the Sentinel-
2A satellite. A multispectral analysis with SNAP and
different wavelengths was carried out, utilizing the
NIR band (0.7e1.4 mm) and Shortwave Infrared
band (1.45 mm, 1.95 mm and 2.5 mm) to check cell
structures, water content and leaf biochemical
respectively. The Vegetation Spectral Reflectance
Curve was calculated for 15 different locations
(Pictures 13 and 14) in order to identify “Healthy
Green Vegetation” 0.7e1.4 mm, “Stressed Vegeta-
tion” 1.4e1.9 mm and “Massive Stressed Vegetation”
1.9e2.5 mm. For checking the health and vitality of
vegetation, the Normalized Difference Vegetation
Index (NDVI) was calculated, having the most
vigorous vegetation within a range value of
0.66e1.0. For NDVI values close to 0.3, it indicated
the presence of shrubs and grassland, while NDVI
values close to 0.0 corresponded to sand, barren
areas of rock, or snow. NDVI values close to �1.0
were related to water areas. Furthermore, a time
series analysis over a period of 4 years, from 2017 to
2020, was accomplished successfully.
Finally, this study aims to successfully prove the

complementarity among the two proposed technolo-
gies, SAR and Multispectral. It opens the door to
further and more detailed research by changing, for
instance, classification parameters, using also addi-
tional operators suchas theGreyLevelCo-occurrence
Matrix (GLCM) for monitoring other areas environ-
mentally or socially affected by oil sand mining ex-
ploitations. Research results showed a cost-effective
innovative solution based on real-time satellite data
for mining and energy companies to improve the
decision-making process. It helps them to analyze the

impact of their mining activities and to walk on the
path to achieve sustainable development.

2. Materials and methods

2.1. Objectives

1. Measuring total forest and deforested areas for
the time period between June 2017 and June
2020, either using data provided by Sentinel-1
and/or Sentinel-2 satellites.

2. Measuring vegetation’s health, calculating the
Vegetation Spectral Reflectance Curve in
different regions of interest (ROIs) within the
surrounding areas close to the mining activities.

3. Calculating accuracy on measuring total forest
and deforested areas obtained either from
Sentinel-1 and/or Sentinel-2 satellite data.

2.2. Tasks

A total of fourteen tasks were carried out in order
to meet the three objectives of this study. Descrip-
tion of all tasks successfully accomplished are
included in Table 1.

2.3. Research approach

The area of interest was analyzed in order to map
the ever-changing forest and provide regular up-
dates on their conditions at a range of spatial and
temporal resolutions. Forest and deforested areas
were identified accordingly using images provided
by Sentinel-1B and Sentinel-2A satellites.
A multispectral analysis with SNAP using

different wavelengths was carried out with the data
provided by the Sentinel-2A satellite. Utilizing the
NIR band (0.7e1.4 mm) and Shortwave Infrared
band (1.45 mm, 1.95 mm and 2.5 mm) cell structures,
water content and leaf biochemical respectively,
could be checked.
The Vegetation Spectral Reflectance Curve was

calculated for 15 different regions of interest (ROIs)
located within the perimeter of Suncor’s mining
permits in order to identify “Healthy Green Vegeta-
tion” 0.7e1.4 mm, “Stressed Vegetation” 1.4e1.9 mm
and “Massive Stressed Vegetation” 1.9e2.5 mm in
non-deforested areas. For checking the health and
vitality of vegetation, the Normalized Difference
Vegetation Index (NDVI) was calculated, using for
this purpose a 10-m spatial resolution for the B8 NIR
band and B4 RED band centered at 842 nm and
665 nm, respectively, since this Index provides
information about the amount of vegetation,
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minimizing topographic effect and also distinguish-
ing between soil and vegetation areas. It is based on
the correlation among red and near-infrared (NIR)
wavelengths since vigorous vegetation (green leaves)
generally have a strong reflection inNIR and a strong
absorption in RED bands.
A Synthetic Aperture Radar analysis and a Su-

pervised Classification with a Random Forest algo-
rithm using a Morphological Filter “Closing 3x3” for
removing random noise were also undertaken over
the same mining-affected area. Radar images were
provided by Sentinel-1B satellite since it has an
active C-band sensor (5.405 Ghz) on board. SNAP
and QGIS v3.16 software were used for image
visualization and management. Calculating total
forest and deforested areas using the “Raster Layer
unique values report” as well.

2.3.1. Study area
According to the information extracted from the

Rainforest Action Network, there is a total of 32 oil
sands companies in Canada [30]. In order to identify
what company and projects could be more inter-
esting for this study, a brief analysis of the literature
was carried out, from which the following Table 2
was elaborated, including the names and volume of
reserves of each oil sand producer.
Among these 20 companies, there are four com-

panies that were blacklisted by the Norwegian
sovereign wealth fund; Suncor Energy, Canadian
Natural Resources (CNRL), Cenovus Energy and
Imperial Oil. However, Suncor Energy is the com-
pany with the biggest volume of reserves, and
therefore, it was chosen for this study to monitor the
areas covered by its oil sands assets.

Table 2. Top-20 Oil Sand producers in AlbertaeCanada. Reserves 2016 ([30] and own study).

Rank Company Reserves
(barrels� 106)

Rank Company Reserves
(barrels� 106)

1 Suncor Energy 10,935.35 11 Total 2575.16
2 Canadian Natural

Resources (CNRL)
6867.53 12 Laricina Energy 2293.82

3 Cenovus Energy 5613.97 13 Sunshine Oilsands 2048.86
4 ConocoPhillips 5520.38 14 Imperial Oil 1694.29
5 ExxonMobil 4844.35 15 CNOOC 1655.91
6 Shell 3670.18 16 BP 1271.27
7 PetroChina 3225.71 17 Marathon Oil 1232.01
8 Athabasca Oil

Corporation
3162.50 18 Devon Energy 1206.83

9 MEG Energy 2973.10 19 Husky Energy 1110.44
10 OSUM 2776.40 20 Chevron 1088.93

Table 1. Summary of tasks.

Objective Tasks

1. Measuring total forest and
deforested areas

T1.1: Downloading 4 SAR products from Sentinel-1B.
T1.2: Pre-processing SAR products with Graph Builder in SNAP.
T1.3: Supervised Classification of SAR products with Random Forest.
T1.4: Post-Processing of Labelled Classes to remove random noise using a
Morphological Filter “Closing 3x3”.
T1.5: Exporting clean RF product to GeoTIFF for visualization with QGIS.
T1.6: Creation of a 2017e2020 Time Series of Deforested areas in SNAP.
T1.7: Calculation of Forested and Deforested areas of RF processed products
with SNAP and “Raster Layer unique values report” with QGIS, comparing
both results.

2. Measuring vegetation’s health, calculating the
Vegetation Spectral Reflectance Curve

T2.1: Downloading 4 Multispectral products from Sentinel-2A.
T2.2: Atmospheric correction of two “Level 1C00 products obtained from
Sentinel-2 using the “Sen2Cor” processor in SNAP.
T2.3: Pre-processing of Multispectral products with Graph Builder in SNAP.
T2.4: Measuring Vegetation’s Health by calculating Normalized Difference
Vegetation Index (NDVI) in SNAP.
T2.5: MSI Vegetation Analysis of RGB images and calculation of Colour
Rough Statistic curves in SNAP for years 2017e2020.
T2.6: Calculation of Spectral Reflectance Curve using the “Optical Spectrum
View” in SNAP for 15 Regions of Interests (ROIs).

3. Calculating accuracy on measuring total forest
and deforested areas

T3.1: Calculation of Confidence Value obtained with SAR products and
Random Forest Classification in SNAP.

JOURNAL OF SUSTAINABLE MINING 2024;23:61e86 65

R
E
S
E
A
R
C
H

A
R
T
IC

L
E



Table 3 presents a summary of the oil sands assets
either fully or partially owned by Suncor Energy
Company. This table delineates each project’s name
and status/type. The first column is dedicated to
enlisting the project names, while the second col-
umn provides information regarding the status or
type of each project, which may vary depending on
the project. The term “In-situ” indicates a technique
of oil sands extraction wherein the bitumen is
heated underground and subsequently extracted
through wells. On the other hand, “Mining” in-
dicates the use of traditional mining methods to
extract oil sands. Lastly, “Reclamation” pertains to
the process of restoring the land post-oil sands
extraction. This process involves rehabilitating the
affected areas by mining operations and the re-
establishment of the ecosystems. “Application pro-
cess” indicates that the project is in the application

stage, and the necessary permits to start the mining
operations are not granted yet.
Figure 1 illustrates the location of oil sands and

Suncor Energy’s projects in Alberta.

2.3.2. Data used
Sentinel-1 and Sentinel-2 data used in this study

were downloaded from the ESA SciHUB, https://
scihub.copernicus.eu/, using different search pa-
rameters as shown in Table 4.
A total of 4 Sentinel-1B images and 4 Sentinel-2

images corresponding to a four-years period be-
tween 2017 and 2020 covering the area of interest
were acquired and analyzed. Table 5 below contains
all images used, including reference and date.
Figure 2 shows the location map of the Sentinel-1
(red) and Sentinel-2 (green) images obtained from
[21] and used for this study.

Table 3. Suncor Energy’s oil sands assets in Alberta and status/type ([31] and own study).

# Project Name Status/Type # Project Name Status/Type

1 MacKay River In-situ 7 Syncrude Mine Mining
2 Suncor Oil Sands (Dover) In-situ 8 Voyageur South mining lease Mining
3 Firebag In-situ 9 Joslyn oil sands mining project Mining
4 Fort Hills Oil Sands Project Mining 10 Wapisiw Lookout Reclamation
5 Millennium Mining 11 Nikanotee Fen Reclamation
6 North Steepbank Mining 12 Base Mine Extension (Lewis) Application process

Fig. 1. Location of oil sands projects and Suncor Energy’s oil sands assets in Alberta [32].
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Since the area of interest is affected by unfav-
ourable weather conditions and mostly covered by
snow during the winter season, this study gave
priority to satellite images obtained during the
summer season, particularly during the months of
July and August. So that results obtained from

Sentinel-1 could be compared with the Sentinel-2
images acquired more or less during the same time
period. Therefore, at least one image per year per
each sentinel satellite was collected for a total period
of four years, from 2017 to 2020.
Sentinel-1 satellites are formed by a constellation

of two polar-orbiting satellites (1A and 1B), which
are phased at 180� to each other. They have an active
sensor (radar) that works on the seabed and pro-
vides data with a short repeat cycle with different
imaging modes. The maximum time gap a user can
have is five to 6 day at the Ecuador level. Sentinel-1
is an all-weather satellite capable of capturing
whole-day radar images, either for land and ocean
uses. Sentinel-1A was launched on April 3, 2014 and

Table 4. Search parameters [33].

Sentinel-1 Sentinel-2
Sensing period: month of

August from 2017 to 2020.
Check Mission: Sentinel-1
Product Type: GRD
Sensor Mode: IW

Sensing period:
months of July and
August from 2017 to 2020.
Check Mission: Sentinel-2
Cloud Cover %: [0 TO 10]

Table 5. Sentinel data used in this study [33].

Satellite Date Image ID

Sentinel-1B 03/08/2020 S1B_IW_GRDH_1SDV_20200803T010645_20200803T010710_022752_02B2E3_0E08
Sentinel-1B 09/08/2019 S1B_IW_GRDH_1SDV_20190809T010639_20190809T010704_017502_020EA0_2660
Sentinel-1B 02/08/2018 S1B_IW_GRDH_1SDV_20180802T010632_20180802T010657_012077_0163CE_B268
Sentinel-1B 07/08/2017 S1B_IW_GRDH_1SDV_20170807T010626_20170807T010651_006827_00C043_6DF3
Sentinel-2A 19/08/2020 S2A_MSIL2A_20200819T183921_N0214_R070_T12VVJ_20200819T230508
Sentinel-2A 26/07/2019 S2A_MSIL2A_20190726T183921_N0213_R070_T12VVJ_20190726T230117
Sentinel-2A 11/07/2018 S2A_MSIL1C_20180711T183921_N0206_R070_T12VVJ_20180711T234527
Sentinel-2A 05/08/2017 S2A_MSIL1C_20170805T183921_N0205_R070_T12VVJ_20170805T183919

Fig. 2. Location map of the Sentinel-1 (red) and Sentinel-2 (green) images ([33] and own study).
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Sentinel-1B two years later, on April 25. They were
launched into orbit from the European Space port in
French Guiana in a Soyuz rocket [34].
Sentinel-2 satellites are a group of two satellites,

2A and 2B, placed in a polar orbit with a 180� phase
between each other. They have a Multispectral in-
strument capable of exploring 13 spectral bands
(from 400 nm to 2200 nm wavelength) with a spatial
resolution of 10, 20 and 60m and a revisit time of
5 day at Ecuador. They are capable of providing
multispectral high-resolution images useful for
monitoring soil, water and vegetation cover as well
as for being used in emergency situations. Sentinel-
2A was taken into orbit on June 23rd, 2015, and
Sentinel-2B on March 7th, 2017 [35].

2.3.3. Workflow
The workflow carried out in this study was split

into two different parts, and all data processed was
grouped into two categories of tasks. One main
group (SAR Data) was required to pre-process SAR
images from the Sentinel-1 satellite, and the second
group (MULTISPECTRAL Data) was used for
describing the pre-processing steps undertaken for
the Sentinel-2 multispectral images.

2.3.3.1. SAR data. All acquired SAR images were
opened in a SNAP session, which is a file that will
open a list of specific products that were selected
and predefined in advance. After opening the image
“S1B_IW_GRDH_1SDV_20170807-
T010626_20170807T010651_006827_00C043_6DF3”,
in the “Product Explorer”, the SAR image was
created for “Intensity VV”.

2.3.3.2. Pre-processing
2.3.3.2.1. Graph Builder. Once the image was

created, the tool known as “Graph Builder” was
used to carry out some pre-processing procedures
on the acquired image prior to its analysis. The
advantage of using the “Graph Builder” tool pro-
vided by SNAP is that some pre-processing steps
can be automatized to use them with all images that
will be processed in a later stage. Thus, a process of
operators and algorithms needed to apply to the
images was also specified. It has many advantages
since a chain of operators can be defined so that
they are entirely applied to the list of products
previously selected. Another important advantage is
that only the final product of this chain will be

created, saving storage capacity for the intermediate
steps.
All the operators and the pre-processing chain

created are shown in Figure 3 below.
2.3.3.2.2. Batch processing. By automating the

execution of multiple processing steps on a set of
data or files, the efficient and consistent application
of various operations without manual intervention
for each individual file is allowed. Table 6 shows a
brief description of all operators included in the pre-
processing chain of SAR images.

2.3.3.2.3. Random Forest classification. Once all
SAR images were pre-processed (see Figure 4) using
the chain described before, a Supervised Classifi-
cation process using for this purpose SNAP software
and a machine learning algorithm called “Random
Forest” (RF) was undertaken. RF is commonly used
as a machine learning technique for classification. It
helps to separate forest and non-forest areas for
each product obtained from Sentinel-1B, shown in
Table 5. Thus, the classification process started by
opening an RGB image Window to better identify
the areas of interest, in which different rectangles
linked to three new “Vector Data Containers”
named “Oil”, “Deforested”, and “Forested” were
drawn and saved as “Shape” files. They will be the
training data used to train the machine learning
model so that it can learn the relation between the
input data and the final one.
The classification process started by picking the

first Sentinel-1B product that was previously pre-
processed in the SNAP’s window “product
explorer”. The first product was the product “Sub-
set_S1B_IW_GRDH_1SDV_20170807T010626_20170
807T010651_006827_00C043_6DF3_Orb_NR_Cal_Sp
k_TC_Sigma0_VH”. Then, by clicking in the menu
option “Vector/Import/ESRI Shapefile” and navi-
gating to the folder “AuxData”, shape files “Oil.shp”,
“Deforested.shp” and “Forested.shp” were selected.
In the SNAP’s window “Import Geometry”, option
“No” was selected and product was saved. Since the
purpose of this research is to analyze the evolution
of deforestation, an independent classification was
run for every product. Thus, the same procedure
described before was repeated for all pre-processed
products from Sentinel-1B. Source products are
shown in Figure 5 below.
The next step was to start the Random Forest

Classifier in the SNAP’s top menu Raster/Classifi-
cation/Supervised Classification/Random Forest
Classifier. “Random Forest” (RF) machine learning

Fig. 3. Operators’ chain used during the pre-processing of SAR images.
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algorithm is effective either for regression or clas-
sification by trying to learn the existing relationship
between training and resulting dataset.
In the Random Forest Classifier window, the first

pre-processed image “Subset_S1B_IW_GRDH
_1SDV_20170807T010626_20170807T010651_006827
_00C043_6DF3_Orb_NR_Cal_Spk_TC” was added
to the ProductSet-Reader tab. In the Random Forest
Classifier tab, the options selected are shown in
Table 7 below.
In the “Write” tab, the “Processed Products” direc-

tory was selected as the output folder, using the
“2017_RF_LabelledClasses” name for the output file
before clicking on the “Run” button. This process was
repeated for the other three pre-processed products
from years 2018, 2019 and 2020, respectively.
After creating the RF products, in the SNAP’s

window, the “Product Explorer” and “Bands” folder
were displayed to adjust the “properties”. By doing
a right click on the “LabelledClasses” band and
selecting the option “properties”. In the popup
window, for the “Valid-Pixel Expression” option, the
default value “Confidence � 0.5” was deleted. Also

the “No-Data Value Used” option was unselected
and the product saved.
By doing double click on the “LabelledClasses”

band, the result can be visualized. The original
colour was adjusted by clicking the “colour manip-
ulation” tab on the left-down window. Then, the
“blue” colour was selected for the category “Defor-
ested” of the year 2017. Reaching this point, the
same process was repeated for the remaining im-
ages from years 2018, 2019 and 2020, while colours
“green”, “orange”, and “red” were respectively
selected for each year. After the process was
finished, all pre-processed images from Sentinel-1B
were closed, keeping only the classified products in
the “Product Explorer” SNAP’s window. The results
of this colour manipulation are depicted in Section
3. “Results”.

2.3.3.3. Post-processing. As it can be seen in the
image below Figure 6, there is still some random
noise. This inherent speckle noise that appears in
the original data obtained with the SAR sensor and
mistakenly classified as “Deforested” should be

Table 6. Operators used in the pre-processing chain.

Operator Description

Apply Orbit File Used to update orbit state vectors of the acquired
product since orbit state vectors provided in the
metadata of a product are generally not accurate and can be refined.
Thus, it provides accurate information on satellite position and velocity,
therefore improving the analysis. Option “do not fail if new orbit file is
not found” was selected.

Thermal Noise Removal The background energy that usually is generated by its own receiver is called
“Thermal noise”.
This aspect is important to be taken into account since it makes the radar reflectivity
to move higher values. Also, it could be an obstacle that could affect the precision of
any estimate made on radar reflectivity. So basically, in this step, part of the inner
noise that appears in the data will be removed.

Calibration This step is a basic step since, thanks to calibration process, calibrated
SAR images with radiometric corrections can be obtained. Therefore, pixel values
can be directly related to the radar backscatter of the scene. This is essential for
quantitative use or comparison of SAR data that, for instance, may be obtained using
different sensors.

Speckle Filtering Sometimes, speckle filtering is unnecessary since it depends on the application and aim
of the images. It is attributed to random interferences of the coherent return waves.
Basically, there are two types: multilook processing or spatial filtering. For this study,
the default speckle filter provided by SNAP was used.

Terrain Correction All distances in SAR images are in radar geometry still. They can be
distorted and should be corrected to compensate for any topographical
variation or distortions. Also, it is important to define the cartographic system
and preferred map projection. Map projection UTM/WGS 84 was selected.

Subset The subset operator was selected to reduce the size and extension of the final product.
Coordinates used: POLYGON ((e112.09469604492188
56.81134033203125, �110.77399444580078
56.81134033203125,
�110.77399444580078 57.49019241333008, �112.09469604492188
57.49019241333008, �112.09469604492188 56.81134033203125,
�112.09469604492188 56.81134033203125))

Write This operator was used to write and save the final product.
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removed in order to work with a cleaned dataset.
For doing so, the closing “Dilation þ Erosion” filter
was used by expanding the first classified product
“Subset_2017_RF” in the Product Explorer SNAP’s
window. After that, the Bands folder was opened
and clicked on the “LabelledClasses” band. In the
Raster top menu, Filtered band menu was clicked,
and then, the “Closing 3x3” option in the Morpho-
logical Filter that appears in the “System” tab was
selected. Finally, the default name for the option
“Band name” was also kept.
Now, in the Product Explorer window appears,

the “LabelledClasses close3” under the Bands folder
previously created. Then, on the top menu, the op-
tion “Windows/Tile Horizontally” was selected in
order to visualize “LabelledClasses” and “Label-
ledClasses close3” simultaneously.
To export the product to GeoTIFF format, the first

product “Subset_S1B_IW_GRDH_1SDV_20170807

T010626_20170807T010651_006827_00C043_6DF3_O-
rb_NR_Cal_Spk_TC_RF” of the Product Explorer
SNAP’s window was selected before clicking on the
“Export” and “GeoTIFF” submenus that appear in the
“File” top menu. Once the “SNAP-Export Product”
window was opened and clicked on the “Subnet”
button on the “Band Subnet” tab, the option “Label-
ledClasses close3”was the only option selected before
clicking on the “OK” and the “Export Product” but-
tons. A product related to the year 2017 was exported
and named “RF_2017GEO”. This full process used for
removing the random noise was repeated for the
remaining products, which were also exported and
renamed to “RF_2018GEO”, “RF_2019GEO”, and
“RF_2020GEO”, respectively.

2.3.3.4. QGIS visualization. To visualize the evolution
as time series 2017e2020 of deforested and non-
deforested areas (see Figures. 8 and 9), QGIS 3.16

Fig. 4. Pre-processed products: (a) Subset_S1B_IW_GRDH_1SDV_20170807T010626_20170807T010651_006827_00C043_6DF3_Orb_NR_Cal_Spk_TC_
Sigma0_VH; (b) Subset_S1B_IW_GRDH_1SDV_20180802T010632_20180802T010657_012077_0163CE_B268_Orb_NR_Cal_Spk_TC_Sigma0_VH;
(c) Subset_S1B_IW_GRDH_1SDV_20190809T010639_20190809T010704_017502_020EA0_2660_Orb_NR_Cal_Spk_TC_Sigma0_VH; (d) Subset_
S1B_IW_GRDH_1SDV_20200803T010645_20200803T010710_022752_02B2E3_0E08_Orb_NR_Cal_Spk_TC_Sigma0_VH.
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software was used. The visualization process started
by adding chronologically the Raster Layers related
to each RF product in the “Layers Panel”. By placing
the most recent product in the lower part of the
“Layers Panel”.
Since each classifiedproduct is bydefault opened as

a single band grey raster file, default “visualization”
and “properties” of the following products

“RF_2017GEO”, “RF_2018GEO”, “RF_2019GEO”, and
“RF_2020GEO”were adjusted according to the criteria
shown in Table 8.
By pressing the “Classify” button and clicking on

the “Load Color Map” icon, one own colour scheme
was picked, selecting the “Color_QGIS_2017.txt”
file and clicking the “OK” button. For the remaining
“RF” products, the same procedure was followed,
saving their color palettes as “Color_-
QGIS_2018.txt”, “Color_QGIS_2019.txt”, and “Col-
or_QGIS_2020.txt” respectively.

2.3.3.4.1. MULTISPECTRAL data. The process
started by launching SNAP software and opening
the four zipped downloaded Sentinel-2A products
described in Table 5 under section 2.3.2.
Once four products were opened in the “Product

Explorer”, a file related to 2020 was selected by
right-clicking on it and also on the option “Open
RGB Image window”. A new window was opened in
which the value “Sentinel 2 MSI Natural Colors”
was selected in the “Profile” drop-down menu. After

Fig. 5. Vector Data Containers of Images used for training data: (a) Subset_S1B_IW_GRDH_1SDV_20170807T010626_20170807T010651_006827_
00C043_6DF3_Orb_NR_Cal_Spk_TC_POL; (b) Subset_S1B_IW_GRDH_1SDV_20180802T010632_20180802T010657_012077_0163CE_B268_
Orb_NR_Cal_Spk_TC_POL; (c) Subset_S1B_IW_GRDH_1SDV_20190809T010639_20190809T010704_017502_020EA0_2660_Orb_NR_Cal_Spk_
TC_POL; (d) Subset_S1B_IW_GRDH_1SDV_20200803T010645_20200803T010710_022752_02B2E3_0E08_Orb_NR_Cal_Spk_TC_POL.

Table 7. Options for the random forest classifier.

Option Value

Train and apply classifier Selected
Train on Vectors Selected
Evaluate classifier Un-checked
Evaluate Feature Power

Set
Un-checked

Number of training
samples

5000

Number of trees 500
Training vectors All shapefiles selected
Feature bands All bands selected
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this step, an RGB image was opened in the View
section.

2.3.3.5. Atmospheric correction. Since two products
related to the years 2017 and 2018 downloaded from
the ESA SciHUB were “Level 1C” data, it was
necessary to convert them to L2A products.
Thus, they were geometrically and radiometrically
corrected, including also ortho-rectification and
spatial-registration. However, only more recent
products from 2019 to 2020 were available and
downloaded as Level 2A, which include atmo-
spheric correction as well.
Atmospheric correction is particularly needed in

those cases where we need to analyze and compare
multi-temporal images, as it happens in our study
case, since the radiation reflected at the Earth’s
surface is generally modified by its interaction at the
atmosphere level. Thus, the goal of this correction is
basically to obtain true surface values at the bottom
of the atmosphere, based on the top of the atmo-
sphere values.

The “Sen2Cor” processor was used to carry out
the atmospheric correction (terrain and cirrus as
optional) for the “Top of atmosphere (TOA)” L1C
products. Thus, for all data obtained from
Sentinel-2A from years 2017 and 2018 previously
downloaded, “Bottom of Atmosphere (BOA)”
corrected reflectance images were created by
using the “Sen2Cor” processor, previously
mentioned.
The process started by installing the “Sen2Cor”

processor since it was not installed by default in the
SNAP 8.0 version. Once installed, the “Optical/
Thematic Land Processing/Sen2Cor Processor/
Sen2Cor280” top menu was selected. In the new
window, under the “I/O parameters” tab, the
“.SAFE” folder was selected for the L1C product of
2017 and the “MTD_MSIL1C.xml” file.
In the second tab titled “Processing Parameters”,

the “Display execution output” option was selected,
and changed the resolution to “ALL” before clicking
on the “Run” button on the same window. After the
image was processed, the process was repeated with

Fig. 6. Speckle Noise comparison using Closing 3x3 Morphological Filter: (a) 2017_RF_LabelledClasses; (b) 2017 RF_close3;
(c) Subset_S1B_IW_GRDH_1SDV_20170807T010626_20170807T010651_006827_00C043_6DF3_Orb_NR_Cal_Spk_TC_POL.

Fig. 7. Operators’ chain used during the pre-processing of multispectral images.
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the other L1C product previously downloaded
related to the year 2018. After finishing the process,
two new products were created in the Product Ex-
plorer window, renamed as “Output Product 2017”
and “Output Product 2018”, respectively. Then,
these two new products were selected by right
clicking on them, selecting the “Close 2 Products”
option and clicking “No” in the next window to
discard changes. The next step was to move the two
new L2A products created in the.SAFE format in the
original folder to the “Level 2A” folder. Results were
loaded in the SNAP software by clicking on the.-
SAFE format for years 2017 and 2018 only, and
doing click in the “MTD_MSIL2A.xml” file for both
years 2017 and 2018.
After having the four L2A products loaded in

SNAP (year 2017, year 2018, year 2019 and year
2020) in the Product Explorer window, the L2A
product from 2020 was opened as an RGB image.
In the new window opened, the profile “Sentinel 2
MSI Natural Colors” was selected. To compare
L1C products and L2A products together, the
“Window/Tile Horizontally” top menu was clicked
on as well. L1C products previously loaded in
SNAP were closed since from now onward, only

L2A products will be required for the next pro-
cessing steps.

2.3.3.6. Resample, subset & calculate. At this stage, the
Graph Builder tool included in SNAP was used to
speed up the process, avoiding going step by step. It
was opened by clicking on the “Tools/Graph-
Builder” top menu.
Since the 13 working Bands of Sentinel-2 do not

have the same resolution (size), and some operators
of the GraphBuilder cannot work with products that
have different sizes, it is necessary to resample all
bands to have them first with the same resolution.
Therefore, the operator “Resample” was added by
right-clicking on the GrapBuilder and contextual
menu “Add/Raster/Geometric/Resample”.
The “Subset” operator was also added to the

GrapBuilder after the resampling by clicking on the
contextual menu “Add/Raster/Geometric/Subset”.
The other two operators, “BandMaths” and “Band-
Merge”, were added and connected to the Graph-
Builder as shown in Figure 7.
After all operators were added and connected to

each other, the Graph was saved as an XML file in
the “Processing” folder.

Fig. 8. RF Classified products without using Closing 3x3 Morphological Filter: (a) 2017_RF_LabeledClasses; (b) 2018_RF_LabeledClasses;
(c) 2019_RF_LabeledClasses; (d) 2020_RF_LabeledClasses.

JOURNAL OF SUSTAINABLE MINING 2024;23:61e86 73

R
E
S
E
A
R
C
H

A
R
T
IC

L
E



The processing parameters of each operator were
the following.
The process was run and repeated for all four L2A

products uploaded to SNAP, starting with the year
2020 and finishing with the year 2017. After
expanding all products in the Product Explorer in
SNAP, NDVI bands for each product were displayed,
picked the colour ramp “Derived from JET” in the
“Colour Manipulation” tab in SNAP, and then
clicked on the “Window/Tile Horizontally” top menu
and zoomed them all to compare all images better,
see Figure 12 included in Section 3 “Results”. The
same histogram stretch was used for all images by
selecting the first view related to the year 2017 and

opening the “Colour Manipulation” tab in the lower
left corner. The same process was followed for other
bands and to NDVIs from years 2018, 2019 and 2020,
too. After all these steps, images were ready to start
the classification with QGIS software.

2.3.3.7. Measuring vegetation’s health. The Normal-
ized Difference Vegetation Index (NDVI) is usually
used to check the health and vitality of vegetation. It
was developed by Rouse, J. W [36]. in 1974 and tells
us information about the amount of vegetation,
minimizing topographic effect and also dis-
tinguishing between soil and vegetation areas.
It is based on the correlation among red and near-

infrared (NIR) wavelengths since vigorous vegeta-
tion (green leaves) generally have a strong reflection
in NIR and a strong absorption in RED bands. For
adding this NDVI band to the original subset, the
“BandMerge” operator was used with the default
values and the equation mentioned in Table 9.
Usually, NDVI runs from the scale of �1.0 to 1.0,

having the most vigorous vegetation within a range
value of 0.66e1.0. NDVI values close to 0.3 indicate
the presence of shrubs and grassland, while NDVI
values close to 0.0 correspond to sand, barren areas

Fig. 9. GEOTIFF Images e after using Closing 3x3 Morphological Filter and 2017e2020 Time Series: (a) RF_2017GEO; (b) RF_2018GEO;
(c) RF_2019GEO; (d) RF_2020GEO (e) RF_2017e2020 Time Series.

Table 8. Options for the Layer Properties of each product.

Option Value

Render Type Singleband pseudocolor
Band Band 1Gy
Min value 0
Max value 1
Interpolation Linear
Color RdY/Gn
Mode Equal interval
Classes 2
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of rock, or snow. Finally, NDVI values close to �1.0
are related to water areas.

2.3.3.8. Calculation of NDVI index. After resampling,
subset and calculation processes, a new layer called
NDVI was added to each GEOTIFF product ob-
tained for the years 2017e2020, together with the
other bands B4, B8, B11 and B12. NDVI Index was
calculated using the operator “BandMaths” in the

operator’s chain of the Graph Builder tool in SNAP.
Parameters used for the BandMaths operator were
described in Table 9.
The process started with the file from 2017 open-

ing the NDVI band in SNAP. The colormap was
edited using for this purpose the “Color Manipula-
tion” tool included in the lower left corner. A colour
band to NDVI values equal to 0.1, 0.33 and 0.66,
respectively, was added and applied the same

Fig. 10. MSI Vegetation Analysis RGB images, NDVI spectral index and Colour Rough Statistic curves for 2017 and 2018: (a) 2017_Resampled_RGB
(Bands B11, B8, and B4); (b) 2017_NDVI; (c) 2017 NDVI Colour Rough Statistic Curve; (d) 2018 NDVI Colour Rough Statistic Curve;
(e) 2018_Resampled_RGB (Bands B11, B8, and B4); (f) 2018_NDVI.
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histogram stretch to NDVI calculated for years 2018,
2019 and 2020. The colour ramp “Derived from JET”
was assigned to all NDVI products, and the results
of this process are depicted in Figure 10, Figure 11,
Table 13 and Section 3.

2.3.3.9. Calculation of spectral curves of ROIs. For
calculating the Spectral curves of the 15 regions of
interest (ROI) in the surrounding area of the Suncor

mining permits, a total of 15 ROIs were randomly
picked over the L2A product related to the year 2020
previously downloaded from Sentinel-2A “S2A_
MSIL2A_20200819T183921_N0214_R070_T12VVJ_
20200819T230508”.
L2A product containing spectral information was

opened in SNAP 8.0 in order to use the twelve
spectral bands included in the product data. The
shortlist of 15 ROIs and their Geographic

Fig. 11. MSI Vegetation Analysis RGB images, NDVI spectral index and Colour Rough Statistic curves for 2019 and 2020: (a) 2019_Resampled_RGB
(Bands B11, B8, and B4); (b) 2019_NDVI; (c) 2019 NDVI Colour Rough Statistic Curve; (d) 2020 NDVI Colour Rough Statistic Curve;
(e) 2020_Resampled_RGB (Bands B11, B8, and B4); (f) 2020_NDVI.
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Coordinates are shown in Figure 13. Spectral
Reflectance Curve was automatically calculated
using the “Pins” and “Optical Spectrum View” tools
in SNAP 8.0 for the 15 Regions of Interests (ROIs)
shown in Figure 14 in Section 3 “Results”.
For placing the 15 pins over the L2A product

image, the “Pin Manager” tool was opened by
clicking on the upper horizontal menu “View/Tool
Windows/Pin Manager” in SNAP. Pixel position (X,
Y) and also geographical coordinates of each pin
were displayed in the pin manager and shown in
Figure 13. Colour of each pin linked to specific ROIs
was colorized and renamed according to the study’s
needs and the researcher’s criteria.

3. Results

3.1. SAR analysis

Table 10 below shows frequency values and level
of confidence obtained for each classified product
after executing the RF classification process in
SNAP.
The result of changing the colour of the RF clas-

sified products is shown in Figure 8 below.
For calculating deforested areas for each class

from years 2017e2020, the tool and algorithm
“Raster layer unique values report” was utilized,

which is included as default in the software QGIS.
Values obtained are shown in Table 11 below.
By comparison of the results obtained with the

program SNAP and the data obtained in QGIS after
using the algorithm “Raster layer unique values
report”, it is observed a small difference each year,
due mainly to the speckle noise removed with the
Closing 3x3 Morphological Filter. Table 12 shows
the differences between both values expressed in
percentage of variation.
As can be seen in the table, the average variation

between QGIS and SNAP values varies in the range
of �2.42% and þ2.37%, both values obtained for the
year 2019.

4. Discussion

After performing the analysis of the SAR and
Multispectral data obtained from sentinel-1B and
sentinel-2A satellites, the discussion focuses on the
SAR data obtained from Se1B for the year 2017.
According to this, it was found interesting the result
of GEOTIFF images obtained after using the Clo-
sing3x3 Morphological Filter and being exported to
QGIS shown in Figure 9. As can be seen, the
2017e2020 Time Series shows different colored
areas representing deforested areas for each year
from 2017 to 2020. The black colour was used to

Fig. 12. NDVI detail images for years 2017, 2018, 2019 and 2020 after using the same histogram stretch (colour manipulation): (a) 2017_NDVI;
(b) 2018_NDVI; (c) 2019_NDVI; (d) 2020_NDVI.
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indicate those areas flooded either by oil and/or
water.
In the image Figure 9a, related to the year 2017,

there was a massive area in the lower left corner
apparently flooded by water or oil. It indicates this
area was likely covered by vegetation and perhaps
water simultaneously since, according to the data
shown in Tables 11 and 12, the obtained value in
2017 for the water/oil-covered area, i.e. 10.60% and
11.49% (SNAP and QGIS), was significantly higher
than values obtained for years 2018, 2019 and 2020
(3.05%, 3.30% and 3.15% respectively). It was

probably because, during the year 2017, the
groundwater table was higher than in other years,
or perhaps because there was a terrestrial oil spill
that covered such area, or a dense vegetation that
reduced radar backscatter, appearing as dark spots
on the image.
In order to find out the origin of such dark spots,

whether they were caused by water, oil or dense
vegetation, the Normalized difference water index
(NDWI) [37] was calculated using for this purpose
Sentinel-2 MSI images and QGIS software.
Figure 15 shows the 12 spectral bands of the

Sentinel-2 MSI instrument. Band 8 in the near-
infrared and band 3 in the visible band will be used
to calculate the NDWI.
To understand why these wavelengths are used to

identify water, it makes sense to look at the reflec-
tance Spectra of water that is shown in Figure 16
below.
The black lines show wavelength on the x-axis

and reflectance on the y-axis. The lowermost black
line is for relatively pure water with low total dis-
solved solids or low turbidity at 35mg per litre. This
pure water has a relatively high reflectance in the
green and low reflectance in the infrared.
Once the L1C (ToA) product related to the year

2017 was downloaded from Sentinel-2A, it was
geometrically and radiometrically corrected,
including also ortho-rectification and spatial regis-
tration using the “Sen2Cor” processor to obtain a
L2A (BoA) product, as it is shown in Figure 17a.
The NDWI was calculated using the formula

below [37] in the QGIS raster calculator.

NDWI¼ ½Green�NIR�
½GreenþNIR�¼

½B3� B8�
½B3þ B8�

The result of applying this formula is depicted
in Figure 17b. After adjusting raster symbology to
identify an NDWI threshold that discriminates
water pixels, the raster calculator was used to assign
high NDWI pixels the value of 1, and all other pixels
a value of 0.
By doing a right-click over the layer properties in

QGIS, the symbology tab was opened. The “Render
type” option was set as “singleband pseudocolor”,
and the “Interpolation” to “Discrete” to be able to
establish thresholds below which or above which
the pixels have a certain color. Two discrete in-
tervals were created, selecting 1.5 for the upper end
and 0.07 to the low end. Thus, anything below or
equal to 0.07 is cleared, and anything above 0.07 is
colored in blue to show it as water.
Water bodies and flooded areas were properly

identified in Figure 17b. Results of the visual

Table 9. Options used for the operators in the Graph Builder for each
product.

Operator/Options Value

RESAMPLE TAB
Define size of resampled

product
B11 (all bands to 20m
resolution)

By reference band from
source product

Checked

Downsampling method Mean
Resample on pyramid

levels
Checked

SUBSET TAB
Bands B4, B8, B11 and B12 Selected
Copy metadata Checked
Geographic coordinates Checked
Coordinates Subset operator was

selected to reduce the size
and extension of the final
product.
Coordinates used: POLY-
GON
((-112.09469604492188
56.81134033203125,
�110.93000000
56.81134033203125,
�110.93000000
57.49019241333008,
�112.09469604492188
57.49019241333008,
�112.09469604492188
56.81134033203125,
�112.09469604492188
56.81134033203125))

BANDMATH TAB
Target band Normalized Difference

Vegetation Index (NDVI)
No-data value 0.0
Edit Expression (B8 e B4)/(B8 þ B4)

This formula was obtained
from NDVI ¼ (NIR� Red )/
(NIR þ Red )

Show bands Checked
BANDMERGE TAB
All settings Used the default value (no

change)
WRITE TAB
Save as GeoTIFF
Output directory … /Processed products
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Fig. 13. Regions of interest (ROIs) map and description table with geographic coordinates: (a) S2A_MSIL2A_20200819T183921_
N0214_R070_T12VVJ_20200819T230508; (b) ROI’s coordinates.
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analysis of the blue-colored areas indicate that there
is a mismatch between the dark spots that appeared
in the bottom left corner of Figure 9a obtained after
processing the Sentinel-1B radar image from the
year 2017 and the results obtained from the NDWI
analysis to identify water flooded areas. Therefore, a

further analysis is required to identify if the dark
spot areas mentioned before were caused by terrain
oil spills or if they should be considered false
positives.
For this purpose, a total of three Prolife Plots (#1,

#2, and #3) were placed over the radar image

Fig. 14. Spectral curve of ROIs.

Table 10. Frequency values and level of confidence per category and year obtained using SNAP.

Category 2017 2018 2019 2020

No Data 0% Conf. 0% Conf. 0% Conf. 0% Conf.

Deforested 7.75% 55.58% 19.86% 52.34% 13.63% 52.73% 13.30% 52.93%
Forested 81.65% 77.79% 77.09% 76.17% 83.07% 76.37% 83.55% 76.46%
Water/Oil 10.60% 100% 3.05% 100% 3.30% 100% 3.15% 100%
Total 100% 100% 100% 100%

Table 11. Raster layer unique values report obtained from QGIS.

2017 2018 2019 2020

Projection EPSG:32612 e WGS 84/
UTM zone 12N

EPSG:32612 e WGS 84/
UTM zone 12N

EPSG:32612 e WGS 84/
UTM zone 12N

EPSG:32612 e WGS 84/
UTM zone 12N

Width in pixels 8064 (units per pixel 10) 8064 (units per pixel 10) 8065 (units per pixel 10) 8064 (units per pixel 10)
Height in pixels 7608 (units per pixel 10) 7608 (units per pixel 10) 7608 (units per pixel 10) 7609 (units per pixel 10)
Total pixel count 61,350,912 61,350,912 61,358,520 61,358,976
Deforested: (Ha)/% 42,347.11 Ha

6.90%
110,169.8 Ha
17.96%

68,770.45 Ha
11.21%

73,837.43 Ha
12.03%

Forested: (Ha)/% 500,699.85 Ha
81.61%

484,410.87 Ha
78.96%

524,250.18 Ha
85.44%

520,284.16 Ha
84.79%

Oil/Water: (Ha)/% 70,462.16 Ha
11.49%

18,928.45 Ha
3.09%

20,564.57 Ha
3.35%

19,468.17 Ha
3.17%

Total 613,509 Ha
100%

613,509 Ha
100%

613,585 Ha
100%

613,590 Ha
100%
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S1B_IW_GRDH_1SDV_20170807T010626_20170807-
T010651_006827_00C043_6DF3 previously processed
and obtained from Sentinel-1B. They were located in
three different areas where the dark spots appeared

after using RF Classification and Closing 3x3
Morphological Filter (Figure 9a). The exact location
of the three profile plots is depicted in Figure 18.
In order to analyze the Sigma0_VVintensity along

the profile plots, the SNAP tool was used, resulting
in three intensity backscatter graphs as depicted in
Figure 19. Areas flooded by oil or water usually have
close to zero Sigma0_VV values while highly
dense vegetation areas present higher values of
Sigma0_VV.
Figure 19b shows the path of the Profile Plot #2

from pixel 0 to pixel 2500. As can be seen, there is a
section between pixel 1275 (point 1) and 1900 (point
2) in which Sigma0_VV values are very close to zero.
This section corresponds to an area in which the
backscattering reflectance of radar waves was
reduced due to the presence of liquid, mostly oily
materials since their reflectance values were slightly
higher than clean water.
Two different sections appear in Figure 19c with

almost zero Sigma0_VV values, indicating that these
two areas of Profile Plot #3 are covered by a liquid
element. Identifying these two areas in Figures. 17b

Table 12. Comparison of QGIS vs SNAP values.

CLASS
2017 2018

SNAP QGIS Var. SNAP QGIS Var.

Deforested % 7.75 6.90 �0.85 19.86 17.96 �1.90
Forested % 81.65 81.61 �0.04 77.09 78.96 1.87
Oil/Water % 10.60 11.49 0.89 3.05 3.09 0.04

2019 2020
CLASS SNAP QGIS Var. SNAP QGIS Var.
Deforested % 13.63 11.21 �2.42 13.30 12.03 �1.27
Forested % 83.07 85.44 2.37 83.55 84.79 1.24
Oil/Water % 3.30 3.35 0.05 3.15 3.17 0.02

Table 13. NDVI e minimum and maximum values for years
2017e2020.

NDVI minimum and maximum values

2017 2018 2019 2020

NDVI min �0.536 �0.560 �0.656 �0.957
NDVI max 0.893 0.931 0.924 0.984

Fig. 15. Sentinel-2 bands [38].

Fig. 16. Spectral signature of highly turbid waters (modified from [39]).
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and 18, it can be concluded that sections between
pixel 375 (point 3) and 550 (point 4) and pixel 725
(point 5) and 1325 (point 6) correspond to water
ponds with backscatter reflectance values very close
or equal to cero.
On the other hand, Figure 19a shows the whole

path of Profile Plot #1 from pixel 0 to pixel 2500. It
has Sigma0_VV values in intensity in the range of
0.100 and 0.325, which are typical values for highly
vegetated areas. In this plot area, it can be observed
that Sentinel-1’s radar waves penetrated through
the vegetation canopy, and they interacted with the
internal structures of the vegetation, such as
branches, leaves, and stems. This interaction,
known as volume scattering, caused the radar waves
to scatter in multiple directions within the vegeta-
tion. As a result of this interaction with the vegeta-
tion, a significant portion of the radar signal was
scattered and, therefore, redirected away from the

radar sensor, leading to low backscattered reflec-
tance and creating dark spots.
Based on the observed patterns and considering

various factors that could influence backscatter
behavior, such as surface roughness, vegetation
density, or liquid bodies, it seems obvious to interpret
that possible causes of such dark spots during the
observation in 2017 are derived from the presence of
shadows occurred when radar signals were blocked
or attenuated by dense vegetation as it is shown in
Figure 17a. In fact, these objects usually cast shadows,
resulting in areas of reduced radar backscatter and
appearing as dark spots on the image.
Another important aspect worth mentioning in

this study is related to the supervised classification
process undertaken with the SAR products. Data
obtained (see Table 10) indicates that the classifica-
tion resulted for the Random Forest process was
acceptable for “Forested” and “Oil/Watered” areas

Fig. 17. L2A (BoA) from the year 2017 after atmospheric correction: (a) Without applying NDWI (b) Water flooded areas after NDWI calculation.

Fig. 18. Location of the profile plots.
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(confidence ranging from 77% to 100%, respec-
tively), but perhaps the “Confidence” was insuffi-
cient for “Deforested areas” with values ranging
from 52% to 56%. In order to obtain a good classi-
fication, it is very important to carry out good
training with the dataset. In this sense, a value equal
to 500 was used for the variable “Number of trees”

(see Table 7). However, to improve the performance
of the supervised classification, other values for the
number of trees (up to 5000) and a better selection of
pixels used for the training data would be highly
recommendable. Some authors [40] suggested that a
value of 500 trees could be reasonable for remote
sensing studies. Nevertheless, other authors such as
[41,42] found it feasible to use a range from 10 up to
5000 trees, depending basically on the spectral-
temporal features and the number of features
associated with the remote sensing data used for the
study.
A second way to likely improve the results during

the supervised classification process would be to use
a Grey Level Co-occurrence Matrix (GLCM) oper-
ator after the “Terrain Correction” during the Batch
processing of SAR Products. Since this operator is
related to the Textures and could be used to increase
the amount of texture information (Contrast, GLMC
Mean, and GLMC Variance) in relation to the in-
formation content in neighbouring pixels. And also
to capture the spatial relationship of pixels in the
SAR products. Thus, for land cover classification
purposes, texture measures from a GLCM could
provide reliable information on the structural dis-
tribution and spatial relationship of pixels [43],
basically by measuring the probability of obtaining
two grey levels, which, in a given direction, can be
separated at a given distance.
With respect to the Multispectral analysis carried

out in this study, the Normalized Difference Vege-
tation Index (NDVI) used to check the health and
vitality of vegetation was a very effective way to
obtain precise information about the amount and
vitality of vegetation, therefore, helping to minimize
topographic effect and facilitating the differentiation
between soil and vegetation areas. Additionally,
used combined with MSI Vegetation Analysis of
RGB images and the Colour Rough Statistic curves,
it provided a useful methodology to easily get a
quick approach to a specific study area.
Comparing obtained results with similar studies,

it was found that, for instance, David, J., Paull et al.
carried out a study in 2006 in which he developed a
multi-temporal analysis of the Freeport mining ac-
tivities using Landsat 5 imagery during the years
between 1988 and 2004 [44]. In their research, they
used satellite remote sensing to monitor the envi-
ronmental impact of mining in remote locations,
specifically focusing on the PT Freeport Indonesia
mine in Papua. The investigation underscored the
efficacy of this approach in overseeing the conse-
quences of extensive mining operations and other
types of utilization of resources, such as deforesta-
tion in developing countries.

Fig. 19. Sigma0_VV values: (a) Profile Plot #1, (b) Profile Plot #2,
(c) Profile Plot #3.

JOURNAL OF SUSTAINABLE MINING 2024;23:61e86 83

R
E
S
E
A
R
C
H

A
R
T
IC

L
E



In 2010, Elisabeth Schoepfer and Olaf Kranz un-
dertook a study to monitor the exploitation of nat-
ural resources, such as mining, using object-based
image analysis and GIS [45]. In their study, an ob-
ject-based multiscale image analysis approach for
monitoring natural resources in conflict situations
was proposed. The approach used high and very
high-resolution optical data to detect the exploita-
tion of natural resources such as mining. They also
concluded that object-based image analysis can be
used for monitoring natural resource exploitation,
emphasizing the idea that the proposed approach
allows for efficient and constant monitoring of
affected areas.
More recently, in 2018, Jaroslaw Wajs carried out a

research study in which he discussed the use of sat-
ellite imagery from Sentinel-1A and Sentinel-2A/2B
sensors for monitoring mining areas and detecting
land changes. He focused on the Belchatow open-cast
lignite mine in central Poland [46]. The data analysis
methodology utilized in his study was founded on an
examination of the remote sensing sensors that were
available for ROI analyses. The research was focused
on the detection of changes within the Szczerc�ow
dumping area in which a careful selection of algo-
rithms, tools, data processing, and spectral classifica-
tion techniques were used during the research. The
processingpath for Sentinel-2 andSentinel-1datawas
meticulously elaborated upon. The SLC signal was
processed to develop the return intensity map using
VV polarization. The resultant SAR image was also
reclassified in order to obtain a strong return signal
from the open pit and the dumping zone. Their
research ultimately determined that the analyzed
remote sensing imagerywasaneffective tool for large-
surface analysis, particularly in its ability to detect
local anomalies and identify potential hazards.
Furthermore, the classification of passive scenes
served as an effective means of monitoring land use
and change and determining changes in XY
components.
In 2021, Narayan Kayet undertook a study using

hyperspectral remote sensing techniques for moni-
toring forest health [47]. The research successfully
validated the utility of hyperspectral satellite data in
the domain of forest health assessment. Addition-
ally, the study also furnished an efficacious guide-
line that could be employed for effective forest
planning and management. He used two methods
for forest health assessment based on the Vegetation
indices (VIs) based model and the tree spectral
analysis. The supervised classification approach
known as Spectral Angle Mapping (SAM) was
employed to classify forest health based on spectral
information. The findings of the study demonstrated

that healthy areas of the forest were situated mainly
on the hilly section of the study zone, while an un-
healthy segment was positioned near the mines. The
model, which was based on Hyperion data-derived
Vegetation Indices (VIs), exhibited superior accu-
racy compared to other spectral-based methods.
Ultimately, the outcomes of the forest health clas-
sification were supported by the spectral data of the
ground trees. This research provided a valuable
guideline for forest management and planning.
The four studies mentioned before were con-

ducted in different years from 2006 to 2021 in the
field of remote sensing and environmental moni-
toring related to mining activities and forest health
assessment. Despite addressing different topics and
locations, all the studies highlighted the use of sat-
ellite remote sensing as an effective tool for moni-
toring and assessing environmental impacts
associated with mining activities and forest health.
They emphasized the importance of satellite imag-
ery in monitoring and evaluating the consequences
of mining operations, including issues like defores-
tation and resource exploitation. Furthermore, they
highlight the potential and ability of remote sensing
to detect land changes and identify potential
hazards.
These researches, along with this study on the

oilsands, are practical applications which demon-
strate how remote sensing works in real-world
mining scenarios. Mainly because they provide in-
sights into the efficacy of using satellite data for
large-scale analysis, not only identifying local
anomalies, monitoring land use and change but also
assessing forest health. Moreover, they offer valu-
able guidelines for effective resource planning and
management based on the findings derived from
remote sensing techniques.

5. Conclusion

According to the results obtained, Sentinel-2
multispectral bands seem to have a higher practical
potential and performance in defining land-covered
areas than perhaps the Sentinel-1 backscatter
bands. However, SAR images obtained from
Sentinel-1 may provide complementary information
when Sentinel-2 multispectral images might be
affected by clouds, particularly by increasing the
separation among classes, especially when it were
necessary to process mixed multispectral qualities
[48].
On the other hand, there is no way to obtain NDVI

values from SAR images, making the use of
Sentinel-2 very essential for getting data from the
Red and Near Infrared bands.
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Analysis performed in this study provides a good
example of how the combined use of SAR and Mul-
tispectral technologies can be extremely useful in
areas affected by bad weather conditions or high
cloud coverage. Therefore, the potential of both
innovative technologies is improved for monitoring,
not only deforestation of mining areas affected by the
exploitation of oil sands in Canada but also, the
health and vitality of vegetation and other interesting
parameters, such as, for instance, water content.
This study comes to prove that SAR and Multi-

spectral analysis of satellite real-time data is a quick
and cost-effective method for monitoring deforesta-
tion and the good environmental performance of oil
sands mining activities, and particularly shows that:

� Total forest and deforested areas for the time
period between June 2017 and June 2020 were
efficiently measured using data provided by
Sentinel-1 and Sentinel-2 satellites.

� Vegetation’s health was accurately measured,
and the Vegetation Spectral Reflectance Curve
in different regions of interest (ROIs) within the
surrounding areas close to the mining activities
was successfully calculated.

� Accuracy on total forest and deforested areas
was obtained from Sentinel-1 and Sentinel-2
satellite data.

For further analysis, it would be interesting to
explore the potential of using this satellite technol-
ogy to analyze how it can contribute to supporting
the achievement of the 17 SDGs, the 169 Targets and
the 232 Indicators prescribed by the UN Sustainable
Development Goals.
Another aspect to be taken into consideration for a

deeper search is the possibility of improving the su-
pervised classification process by trying other algo-
rithms as well, not only Random Forest, so that they
can contribute to enhancing the performance and
confidence of the classified products, also, opening
the possibility of making additional comparisons
between the supervised classification of SAR prod-
ucts versus Multispectral products in order to study
different ways to improve the final results.
The use of Polarimetric SAR interferometry

(PolInSAR), which is a technique that uses radar
data from synthetic aperture radar (SAR) sensors to
estimate the height of forest canopy, could also be
considered to be explored in future studies. In fact,
since PolInSAR uses the phase difference between
horizontally and vertically polarized radar signals to
calculate the height of the canopy, it could be a
complementary technique to optical systems
particularly useful depending on the density of the

forest environment. It could provide high-resolution
and accurate estimates of forest height since it has
been used in various studies to map and monitor
forest canopy height and structure.
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