PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison and study of mechanical and physical properties of metakaolin reinforced gypsum composite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the effect of creating a composite of gypsum with metakaolin as well as the physical and mechanical behavior of the produced composites. For this purpose, gypsum composites were prepared with 2.9, 4.8, 6.5, and 9 wt.% metakaolin in 100 g of gypsum and a constant content of water. To determine the mechanical properties of the composites, the compressive strength test was used and the porosity, water absorption percentage, and bulk density of the composites were obtained using the Archimedes method. The results showed that the porosity was reduced by adding up to 7 wt.% metakaolin to the gypsum specimens, it increases the compressive strength by 41% and also raises the Young’s modulus of gypsum by 121%. Scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) was employed for the microstructural evaluations. The EDS-SEM observations showed the presence of Al and Si elements in the fracture zones. The presence of metakaolin elements at one point increases resistance in that area. Metakaolin-reinforced gypsum composites can be used in boards and panels.
Rocznik
Strony
129--135
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Islamic Azad University, Najafabad Branch, Department of Architecture, Najafabad, Iran
  • Islamic Azad University, Najafabad Branch, Materials Engineering Department, Advanced Materials Research Center, Najafabad, Iran
autor
  • Islamic Azad University, Najafabad Branch, Department of Architecture, Najafabad, Iran
  • Islamic Azad University, Najafabad Branch, Materials Engineering Department, Advanced Materials Research Center, Najafabad, Iran
Bibliografia
  • [1] Abidi S., Joliff Y., Favotto C., Impact of perlite, vermiculite and cement on the Young modulus of a plaster composite material: Experimental, analytical and numerical approaches, Compos. Part B Eng. 2016, 92, 28-36, DOI: 10.1016/j.compositesb.2016.02.034.
  • [2] Doleželová M., Scheinherrová L., Krejsová J., Vimmrová A., Effect of high temperatures on gypsum-based composites, Constr. Build. Mater. 2018, 168, April, 82-90, DOI: 10.1016/j.conbuildmat.2018.02.101.
  • [3] Medina N.F., Barbero-Barrera M.M., Mechanical and physical enhancement of gypsum composites through a synergic work of polypropylene fiber and recycled isostatic graphite filler, Constr. Build. Mater. 2017, 131, January, 165-177, DOI: 10.1016/j.conbuildmat.2016.11.073.
  • [4] Singh N.B., Vellmer C., Middendorf B., Effect of carboxylic acids on the morphology, physical characteristics and hydration of α-hemihydrate plaster, Constr. Build. Mater. 2005, 12, 4. 337-344, DOI: 10.1016/j.conbuildmat. 2010.12.005.
  • [5] Bicer A., Kar F., Thermal and mechanical properties of gypsum plaster mixed with expanded polystyrene and tragacanth, Therm. Sci. Eng. Prog. 2017, 1, March, 59-65, DOI: 10.1016/j.tsep.2017.02.008.
  • [6] Gencel O., del Coz Diaz J.J., Sutcu M., Koksal F., Álvarez Rabanal F.P., Martínez-Barrera G., A novel lightweight gypsum composite with diatomite and polypropylene fibers, Constr. Build. Mater. 2016, 113, June, 732-740, DOI: 10.1016/j.conbuildmat.2016.03.125.
  • [7] Arikan M., Sobolev K., The optimization of a gypsum-based composite material, Cem. Concr. Res. 2002, 32, 11, November, 1725-1728, DOI: 10.1016/S0008-8846(02)00858-X.
  • [8] Iucolano F., Caputo D., Leboffe F., Liguori B., Mechanical behavior of plaster reinforced with abaca fibers, Constr. Build. Mater. 2015, 99, November, 184-191, DOI: 10.1016/ j.conbuildmat.2015.09.020.
  • [9] Schug B. et al., A mechanism to explain the creep behavior of gypsum plaster, Cem. Concr. Res. 2017, 98, August, 122-129, DOI: 10.1016/j.cemconres.2017.04.012.[
  • 10] Kretova V., Hezhev T., Mataev T., Hezhev K., Vasily A., Gypsumcementpozzolana composites with application volcanic ash, Procedia Eng. 2015, 117, 206-210, DOI: 10.1016/j.proeng.2015.08.142.
  • [11] Cotrim H., do Rosario Veiga M., de Brito J., Freixo palace: Rehabilitation of decorative gypsum plasters, Constr. Build. Mater. 2008, 22, 1, January 41-49, DOI: 10.1016/ j.conbuildmat.2006.05.060.
  • [12] Khalil A.A., Tawfik A., Hegazy A.A., Plaster composites modified morphology with enhanced compressive strength and water resistance characteristics, Constr. Build. Mater. 2018, 167, 55-64, DOI: 10.1016/j.conbuildmat.2018.01.165.
  • [13] Kondratieva N., Barre M., Goutenoire F., Sanytsky M., Study of modified gypsum binder, Constr. Build. Mater. 2017, 149, September, 535-542, DOI: 10.1016/j.conbuildmat. 2017.05.140.
  • [14] Vimmrová A., Keppert M., Svoboda L., Černý R., Lightweight gypsum composites: Design strategies for multifunctionality, Cement and Concrete Comp. 2011, 33, 1, 84-89, DOI: 10.1016/j.cemconcomp.2010.09.011.
  • [15] Singh M., Garg M., Glass fibre reinforced water-resistant gypsum-based composites, Cement and Concrete Comp. 1992, 14, 1, 23-32, DOI: 10.1016/0958-9465(92)90036-U.
  • [16] Zhu C., Zhang J., Peng J., Cao W., Liu J., Physical and mechanical properties of gypsum-based composites reinforced with PVA and PP fibers, Constr. Build. Mater. 2018, 163, February, 695-705, DOI: 10.1016/j.conbuildmat.2017.12.168
  • [17] Vejmelková E., Koňáková D., Čáchová M., Keppert M., Černý R., Effect of hydrophobization on the properties of lime-metakaolin plasters, Constr. Build. Mater. 2012, 37, 556-561, DOI: 10.1016/j.conbuildmat.2012.07.097.
  • [18] Mabey M.J., Light-weight, fire-resistant composition and assembly, US Patent, 2017, [Online]. Available: https:// patents.google.com/patent/CA2999580A1/.
  • [19] Koper A., Prałat K., Ciemnicka J., Buczkowska K., Influence of the calcination temperature of synthetic gypsum on the particle size distribution and setting time of modified building materials, Energies 2020, 13, 21, DOI: 10.3390/en13215759.
  • [20] Chikhi M., Young’s modulus and thermophysical performances of bio-sourced materials based on date palm fibers, Energy Build. 2016, 129, October, 589-597, DOI: 10.1016/j.enbuild.2016.08.034.
  • [21] Tokarev Y., Ginchicki J., Sychugow S., Krutikow W., Jakowlew G., Burianow A., Senkow S., Modification of gypsum binders by using carbon nanotubes and mineral additives, Procedia Eng. 2017, 172, 1161-1168, DOI: 10.1016/j.proeng.2017.02.135.
  • [22] Noushini A., Hastings M., Castel A., Aslani F., Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete, Constr. Build. Mater. 2018, 186, October, 454-475, DOI: 10.1016/j.conbuildmat.2018.07.110.
  • [23] Kalaiyarrasi A.R.R., Priyadharshini S.P., Fibre reinforced metakaolin geopolymer composite, Int. J. Recent Sci. Res. 2018, 9, 8(A), 28303-28305, DOI: 10.24327/ijrsr. 2018.0908.2434.
  • [24] Arsalan Mohammad Ali Akram, Aijaz Ali, A study on nylon fibre reinforced concrete by partial replacement of cement with metakaolin: a literature review, Int. Res. J. Eng. Technol. 2018, e-ISSN: 2395-0056.
  • [25] Pundir A., Garg M., Singh R., Evaluation of properties of gypsum plaster-superplasticizer blends of improved performance, J. Build. Eng. 2015, 4, December, 223-230, DOI: 10.1016/j.jobe.2015.09.012.
  • [26] Ozerkan N.G., Ahsan B., Mansour S., Iyengar S.R., Mechanical performance and durability of treated palm fiber reinforced mortars, Int. J. Sustain. Built Environ. 2013, 2, 2, December, 131-142, DOI: 10.1016/j.ijsbe.2014.04.002.
  • [27] Mohandesi J.A., Sangghaleh A., Nazari A., Pourjavad N., Analytical modeling of strength in randomly oriented PP and PPTA short fiber reinforced gypsum composites, Comp. Mater. Sci. 2011, 50, 5, 1619-1624, DOI: 10.1016/ j.commatsci.2010.12.020.
  • [28] Tabatabai H., Janbaz M., Nabizadeh A., Mechanical and thermo-gravimetric properties of unsaturated polyester resin blended with FGD gypsum, Constr. Build. Mater. 2018, 163, February 438-445, DOI: 10.1016/j.conbuildmat. 2017.12.041.
  • [29] Palou M., Kuzielová E., Žemlička M., Novotný R., Másilko J., The effect of metakaolin upon the formation of ettringite in metakaolin-lime-gypsum ternary systems, J. Therm. Anal. Calorim. 2018, 133, 1, 77-86, DOI: 10.1007/s10973- 017-6885-0.
  • [30] McLellan B.C., Williams R.P., Lay J., Van Riessen A., Corder G.D., Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement, J. Clean. Prod. 2011, 19, 9-10, 1080-1090, DOI: 10.1016/ j.jclepro.2011.02.010.
  • [31] Davidovits J., False values on CO2 emission for geopolymer cement/concrete, [in:] Scientific Papers, Geopolymer Inst. Libr. Tech. Pap. 2015, 24, 1-9.
  • [32] Gao H.T., Liu X.H., Zhang S.J., Qi J.L., Synergistic effect of glass fibre and Al powder on the mechanical properties of glass-ceramics, Ceram. Int. 2018, 44, 13, 15167-15175, DOI: 10.1016/j.ceramint.2018.05.155.
  • [33] Robi K., Jakob N., Matevz K., Matjaz V., The Physiology of sports injuries and repair processes, Curr. Issues Sport. Exerc. Med. 2013, DOI: 10.5772/54234.
  • [34] Jiang S., Guo S., Huang Y., Ning Z., Xue P., Ru W., Zhang J., Sun J., In situ study of the shear band features of a CuZrbased bulk metallic glass composite, Intermetallics 2019, 112, June, 106523, DOI: 10.1016/j.intermet.2019.106523.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b62b52af-b17b-42ce-b61f-239773206c15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.