Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Extracellular laccase produced by the wood-rotting fungus Cerrena unicolor was immobilised covalently on the mesostructured siliceous foam (MCF) and three hexagonally ordered mesoporous silicas (SBA-15) with different pore sizes. The enzyme was attached covalently via glutaraldehyde (GLA) or by simple adsorption and additionally crosslinked with GLA. The experiments indicated that laccase bound by covalent attachment remains very active and stable. The best biocatalysts were MCF and SBA-15 with Si–F moieties on their surface. Thermal inactivation of immobilised and native laccase at 80°[degrees]C showed a biphasic-type activity decay, that could be modelled with 3parameter isoenzyme model. It appeared that immobilisation did not significantly change the mechanism of activity loss but stabilised a fraction of a stable isoform. Examination of time needed for 90% initial activity loss revealed that immobilisation prolonged that time from 8 min (native enzyme) up to 155 min (SBA-15SF).
Czasopismo
Rocznik
Tom
Strony
611--620
Opis fizyczny
Bibliogr. 20 poz., tab., rys.
Twórcy
autor
- Wrocław University of Technology, Faculty of Chemistry, Department of Bioorganic Chemistry, Norwida 4/6, 50-373 Wrocław, Poland
autor
- Department of Chemical Engineering, Silesian University of Technology, M. Strzody 7, 44-100 Gliwice, Poland
autor
- Department of Chemical Engineering, Silesian University of Technology, M. Strzody 7, 44-100 Gliwice, Poland
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
Bibliografia
- 1. Al-Adhami A.A.J.H., Bryjak J., Greb-Markiewicz B., Peczyńska-Czoch W., 2002. Immobilization of woodrotting fungi laccases on modified cellulose and acrylic carriers. Process Biochem., 37, 1387-1394. DOI: 10.1016/S0032-9592(02)00023-7.
- 2. Avnir D., Coradin T., Lev O., Livage J., 2006. Recent bio-applications of sol-gel materials. J. Mater. Chem., 16, 1013-1030. DOI: 10.1039/b512706h.
- 3. Bryjak J., Kruczkiewicz P., Rekuć A., Peczyńska-Czoch W., 2007. Laccase immobilization on copolymer of butyl acrylate and ethylene glycol dimethacrylate. Biochem. Eng. J., 35: 325-332. DOI:10.1016/j.bej.2007.01.031.
- 4. Bryjak J., Rekuć A., 2010. Effective purification of Cerrena unicolor laccase using microfiltration, ultrafiltration and acetone precipitation. Appl. Biochem. Biotechnol., 160, 2219-2235. DOI: 10.1007/s12010-009-8791-9.
- 5. Chaudhary Y.S., Manna S.K., Mazumdar S., Khushalani D., 2008. Protein encapsulation into mesoporous silica hosts. Micropor. Mesopor. Mat., 109, 535-541. DOI: 10.1016/j.micromeso.2007.06.001.
- 6. Childs R.E., Bardsley W.G., 1975. The steady-state kinetics of peroxidase with 2,20-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid) as chromogen. Biochem. J., 145, 93–103.
- 7. Durán N., Rosa M.A., D’Annibale A., Gianfreda L., 2002. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb. Technol., 31, 907-931. DOI: 10.1016/S0141-0229(02)00214-4.
- 8. Hudson S., Cooney J., Magner E., 2008. Proteins in mesoporous silicates. Angewandte Chemie. Int. Ed., 47, 8582-8594.
- 9. Lei C., Shin Y., Magnusom J.K., Fryxell G., Lasure L.L., Elliott D.C., Liu J., Ackerman E.J., 2006. Characterization of functionalized nanoporous supports for protein confinement. Nanotechnol., 17, 5531-5538. DOI: 10.1088/0957-4484/17/22/001.
- 10. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., 1951. Protein measurement with the Foulin phenol reagent. J. Biol. Chem., 193, 265-275.
- 11. Michniewicz A., Ullrich R., Ledakowicz S., Hofrichter M., 2006. The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Appl. Microbiol. Biotechnol., 69, 682-688. DOI: 10.1007/s00253-005-0015-9.
- 12. Mikolasch A., Schauer F., 2009. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl. Microbiol. Biotechnol., 82, 605-624. DOI: 10.1007/s00253-009-1869-z.
- 13. Pierre A.C., 2004. The sol-gel encapsulation of enzymes. Biocatal. Biotransform., 22, 145-170. DOI: 10.1080/10242420412331283314.
- 14. Rekuć A., Kruczkiewicz P., Jastrzembska B., Liesiene J., Peczyńska-Czoch W., Bryjak J., 2008. Laccase immobilization on the tailored cellulose-based Granocel carriers. Int. J. Biol. Macromol., 42, 208-215. DOI: 10.1016/j.ijbiomac.2007.09.014.
- 15. Rekuć A., Bryjak J., Szymańska K., Jarzębski A.B., 2009. Laccase immobilization on mesostructured cellular foams affords preparations with ultra high activity. Proc. Biochem., 44, 191-198. DOI: 10.1016/j.procbio.2008.10.007.
- 16. Rekuć A., Bryjak J., Szymańska K., Jarzębski A.B., 2010. Very stable silica-gel-bound laccase biocatalysts for the selective oxidation in continuous systems. Biores. Technol., 101, 2076-2083. DOI: 10.1016/j.biortech.2009.11.077.
- 17. Sadana A., 1991. Biocatalysis. Fundamentals of enzyme deactivation kinetics. Prentice Hall, Englewood Cliffs, New Jersey.
- 18. Szymańska K., Bryjak J., Jarzębski A.B, 2009. Immobilization of invertase on mesoporous silicas to obtain hyper active biocatalysts. Top. Catal., 52, 1030-1036. DOI: 10.1007/s11244-009-9261-x.
- 19. Witayakran S., Ragauskas A.J., 2009. Synthetic applications of laccase in Green Chemistry. Adv. Synth. Catal., 351, 1187-1209. DOI: 10.1002/adsc.200800775.
- 20. Zhao D., Huo Q., Feng J., Chmelka B.F., Stucky G.D., 1998. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc., 120, 6024-6036. DOI: 10.1021/ja974025i.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b62a2378-49da-43f1-89ce-efd42f7d71c7