Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The assessment of lifeboat coxswain performance in operational scenarios representing offshore emergencies has been prohibitive due to risk. For this reason, human performance in plausible emergencies is difficult to predict due to the limited data that is available. The advent of lifeboat simulation provides a means to practice in weather conditions representative of an offshore emergency. In this paper, we present a methodology to create probabilistic models to study this new problem space using Bayesian Networks (BNs) to formulate a model of competence. We combine expert input and simulator data to create a BN model of the competence of slow-speed maneuvering (SSM). We demonstrate how the model is improved using data collected in an experiment designed to measure performance of coxswains in an emergency scenario. We illustrate how this model can be used to predict performance and diagnose background information about the student. The methodology demonstrates the use of simulation and probabilistic methods to increase domain awareness where limited data is available. We discuss how the methodology can be applied to improve predictions and adapt training using machine learning.
Rocznik
Tom
Strony
585--594
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
- Virtual Marine, St. John’s, Newfoundland, Canada
autor
- Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
autor
- Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
autor
- Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
Bibliografia
- 1. Billard, R., Smith, J.J.E. (2018). Using simulation to assess performance in emergency lifeboat launches. Proceedings, e Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC). Paper number 19179.
- 2. Billard, R., Smith, J., Veitch B., (2019) Assessing lifeboat coxswain training Alternatives using a simulator. The Journal of Navigation, Published online by Cambridge University Press: 19 September 2019.
- 3. Billard, R., Musharraf, M., Smith, J., Veitch B., (2020), Using Bayesian methods and simulator data to model lifeboat coxswain performance. WMU Journal of Maritime Affairs. Published May 2020. https://doi.org/10.1007/s13437-020-00204-0 - doi:10.1007/s13437-020-00204-0
- 4. de Klerk, S., Veldkamp, B.P., Eggen, T., (2015). Psychometric analysis of the performance data of simulation-based assessment: A systematic review and a Bayesian network example. Computers & Education 85 (2015), 23-34. - doi:10.1016/j.compedu.2014.12.020
- 5. Dempster, A.P., Laird, N.M., Rubin, D.B. (1977), Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), Vol. 39, No. 1. (1977), pp.1-38. - doi:10.1111/j.2517-6161.1977.tb01600.x
- 6. Groth K., Smith, C., Swiler, L. (2014). A Bayesian method for using simulator data to enhance human error probabilities assigned by existing HRA methods. Reliability and System Safety 128 (2014), 32-40 - doi:10.1016/j.ress.2014.03.010
- 7. International Maritime Organization., & International Conference on Training and Certification of Seafarers (2010). STCW including 2010 Manila Amendments, 2017 Edition.
- 8. International Maritime Organization. (2014). International Convention for the Safety of Life at Sea (SOLAS), Consolidated Edition. London: International Maritime Organization.
- 9. Käser, T., Klingler, S., Schwing, A., Gross, M. (2017). Dynamic Bayesian Networks for student modeling. IEEE Transactions on Learning Technologies, Vol. 10, No. 4. Oct.-Dec. 1 2017. - doi:10.1109/TLT.2017.2689017
- 10. Klein, G., (2008), Naturalistic decision making. Human Factors: The Journal of Human Factors and Ergonomic Society, 50(3), 456-460. - doi:10.1518/001872008X288385
- 11. McClernon, C. K., McCauley, M. E., O’Connor, P. E., & Warm, J. S. (2011). Stress training improves performance during a stressful flight. Human Factors: The Journal of the Human Factors and Ergonomics Society, 53(3), 207-218. - doi:10.1177/0018720811405317
- 12. Millán, E., Perez-De-La-Cruz, J.L., (2002). A Bayesian diagnostic algorithm for student modeling and its evaluation. User Modeling and User-Adapted Interaction 12: 281-330, Kluwer Academic Publishers, Netherlands - doi:10.1023/A:1015027822614
- 13. Millán , E., Loboda, T., Perez-de-la-Cruz, J.L. (2010). Bayesian networks for student model engineering. Computers and Education, 55, 1663-1683 - doi:10.1016/j.compedu.2010.07.010
- 14. Mislevy, R. J., Almond, R. G., & Lukas, J. (2004). A brief introduction to evidence-centered design. CSE technical Report. Los Angeles: The National Center for Research on Evaluation, Standards, and Student Testing (CRESST). Retrieved from http://www.cse.ucla.edu/products/reports/r632.pdf. - doi:10.1037/e646212011-001
- 15. Sellberg, C. (2017). Simulators in bridge operations training and assessment: a systematic review and qualitative synthesis. WMU Journal of Maritime Affairs, 16(2), 247-263. - doi:10.1007/s13437-016-0114-8
- 16. Stefanidis, D., Korndorffer, J.R., Markley, S., Sierra, R., Heniford, B.T., & Scott, D.J. (2007). Closing the gap in operative performance between novices and experts: does harder mean better for laparoscopic simulator training? Journal of the American College of Surgeons, 205(2), 307-313. - doi:10.1016/j.jamcollsurg.2007.02.080
- 17. Weinert, F. E. (2001): Competencies and Key Competencies: Educational Perspective. International Encyclopedia of the Social and Behavioral Sciences, vol. 4, Elsevier, 2433–2436. - doi:10.1016/B0-08-043076-7/02384-6
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6293946-06fd-4aa7-bc98-9b4a718e0208