PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review on the progress of ZnSe as inorganic scintillator

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern scintillator detectors act as an efficient tool for detection and measurement of ionizing radiations. ZnSe based materials have been found to be a promising candidate for scintillation applications. These scintillators show much-needed scintillation efficiency along with advantages such as high thermal and radiation stability, less-toxicity, non-hygroscopicity, emissions in the visible range and small decay time etc. Further, in quantum confinement regime, they show improvement in luminescent properties and size dependent emissions. In this review article, the attempt has been made to trace the progress of ZnSe based materials towards highly efficient quantum dot scintillators. Here, the fundamental process of scintillation has been explained. Factors such as doping, annealing, heavy ion irradiation which affects the scintillation response of ZnSe based scintillators have also been discussed. Method of synthesis plays a key role in optimization of quantum dot properties. Hence, it has been tried to trace the development in methods of synthesis of quantum dots. With optimized synthesis, we can extend applications of these highly efficient quantum dot scintillators for various scientific and industrial applications.
Rocznik
Strony
90--103
Opis fizyczny
Bibliogr. 179 poz., wykr., rys., tab.
Twórcy
  • Department of Instrumentation Science, Savitribai Phule Pune University, Pune 411007, India
autor
  • Department of Instrumentation Science, Savitribai Phule Pune University, Pune 411007, India
autor
  • Space Astronomy Group, ISRO Satellite Centre (ISAC), Bangalore, India
  • K.K. Wagh Institute of Engineering Education and Research, Nasik 422003, India
  • Department of Physics, Savitribai Phule Pune University, Pune 411007, India
Bibliografia
  • [1] F.N. Flakus, Detecting and measuring ionizing radiation-a short history, Radiation detection, IAEA Bull. 23 (4) (1981) 31–36.
  • [2] G.F. Kholl, Chapter-2 : Radiation interaction, in: radiation detection andmeasurement, 3rd edition, Wiley & Sons, Inc., New York, 1999, 29–64.
  • [3] L.F. Heckelsberg, Historical note — thermoluminescent dosimetry (LiF)1950-1951, Health Phys. 39 (3) (1980) 391–393.
  • [4] R. Chen, Advantages and disadvantages in the utilisation ofthermoluminescence (tl) and optically stimulated luminescence (OSL) forradiation dosimetry, IRPA regional congress on radiation protection incentral Europe Dubrovnik, Croatia 33 (May (29)) (2001) 20–25.
  • [5] W.C. Roentgen, On a new kind of rays, Science 3 (59) (1986) 227–231, http://dx.doi.org/10.1126/science.3.59.227.
  • [6] H. Becquerel, Sur les radiations invisibles émises par les sels d’uranium, C. R.hebd. Séanc. Acad. Sci. Paris 122 (1896) 689–694.
  • [7] S. Abe, Efforts to obtain Japanese Profile of Ambient Natural Radiation Exposure, Journal of Health Physics 6 (1982) 104–113.
  • [8] W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, 2nd ed.,Springer, 1994.
  • [9] P. Lecoc, A. Annenkov, A. Gektin, M. Korzhik, C. Pedrini, InorganicScintillators for Detector Systems-Physical Principles and Crystal Engineering, Springer, 2006, http://dx.doi.org/10.1007/3-540-27768-4.
  • [10] R.J. Moon, Inorganic crystals for the detection of high energy particles andquanta, Phys. Rev. 73 (1948) 1210.
  • [11] H. Kallmann, Quantitative measurements with scintillation counters, Phys.Rev. 75 (1949) 623–626.
  • [12] G.B. Collins, R.C. Hoyt, Detection of beta-rays by scintillations, Phys. Rev. 73(1948) 1259–1260.
  • [13] P.R. Bell, The use of anthrance as a scintillation counter, Phys. Rev. 73 (1948)1405–1406.
  • [14] H. Kallmann, Scintillation counting with solutions, Phys. Rev. 78 (5) (1950)621–622.
  • [15] H. Kallmann, M. Furst, Fluorescence of solutions bombarded with highenergy radiation (energy transport in liquids), Phys. Rev. 79 (1950) 857–870.
  • [16] H. Kallmann, M. Furst, Fluorescence of solutions bombarded with highenergy radiation (energy transport in liquids) part II, Phys. Rev. 81 (1951) 853–864.
  • [17] H. Kallmann, M. Furst, High energy induced fluorescence in organic liquidsolutions (energy transport in liquids) part III, Phys. Rev. 85 (1951) 816–825.
  • [18] G.T. Reynolds, Noble gas scintillation under electron excitation, Nucleonics 6(1950) 488–489.
  • [19] R.K. Swank, Recent advances in theory of scintillation phosphors, Nucleonics12 (1954) 14–22.
  • [20] M.G. Schorr, F.L. Torney, Solid non-crystalline scintillation phosphors, Proc.Phys. Soc. (London) (1950) 474–475.
  • [21] R. Hofstadter, The detection of gamma-rays with thallium-activated sodiumiodide crystals, Phys. Rev. 75 (1949) 796–810.
  • [22] G.F. Knoll, Radiation Detection and Measurement, 3rd edition, John Wiley &Sons, 1999.
  • [23] G. Blasse, Reviews, Scintillator materials, Chem. Mater. 6 (1994) 1465–1475.
  • [24] G. Bizarri, Scintillation mechanisms of inorganic materials: From crystalcharacteristics to scintillation properties, J. Cryst. Growth 312 (2010)1213–1215.
  • [25] M. Nikl, Review article, Scintillation detectors for X-rays, Meas. Sci. Technol.17 (2006) R37–R54.
  • [26] C.W.E. van Eijk, Topical review, Phys. Med. Biol. 47 (2002), R85–R106.
  • [27] P. Dorenbos, C.W.E. van Eijk (Eds.), Proceeding of the InternationalConference on Inorganic Scintillators and Their Applications, SCINT95, DelftUniversity Press, Delft, The Netherlands, 1996.
  • [28] Y. Zhiwen, F. Xiqi, L. Peijun, X. Zhilin (Eds.), Proceedings of the InternationalConference on Inorganic Scintillators and their Applications, SCINT97, CAS, Shanghai Branch Press, Shanghai, China, 1997.
  • [29] J.B. Bricks, The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford, 1964.
  • [30] P.A. Rodnyi, Physical Processes in Inorganic Scintillators, 1st edition, CRC Press LLC, 1997.
  • [31] G.F. Kholl, Chapter-8: Scintillation detector principles, in: Radiation Detection and Measurement, 3rd edition, Wiley & Sons, Inc., New York,1999, pp. 219–263.
  • [32] C.W.E. van Eijk, Inorganic-scintillator development, Nucl. Instrum. Methods Phys. Res. A 460 (2001) 1–4.
  • [33] R. Hofstadter, Alkyl halide scintillation counters, Phys. Rev. 74 (1948)100.
  • [34] M. Moszynski, C. Gresset, J. Vacher, R. Odru, Timing properties of BG Oscintillator, Nucl. Instrum. Methods 188 (1981) 403–409.
  • [35] M. Miyajima, S. Sasaki, E. Shibamura, Number of photoelectrons from aphotomultiplier cathode coupled with a NaI(Tl) scintillator, Nucl. Instrum.Methods 224 (1984) 331–334.
  • [36] E. Sakai, Recent measurements on scintillator -photodetector systems, IEEET. Nucl. Sci. 34 (1) (1987) 418–422.
  • [37] I. Holl, E. Lorenz, G. Mageras, A measurement of the light yield of commoninorganic scintillators, IEEE T. Nucl. Sci. 35 (1) (1988) 105–109.
  • [38] D.R. Kinloch, W. Novak, P. Raby, I. Toepke, New developments in cadmiumtungstate, IEEE T. Nucl. Sci. 41 (1994) 752–754.
  • [39] M. Moszyixki, M. Kapusta, M. Mayhugh, D. Wolski, S.O. Flyckt, Absolute lightoutput of scintillators, IEEE T. Nucl. Sci. 44 (3) (1997) 1052–1061.
  • [40] J.D. Valentine, D.K. Wehe, G.F. Knoll, C.E. Moss, Temperature dependence ofCsI(Tl) absolute scintillation yield, IEEE Trans. Plasma Sci. IEEE Nucl. PlasmaSci. Soc. 40 (4) (1993) 1267–1274.
  • [41] J.D. Valentine, W.W. Moses, S.E. Derenzo, D.K. Wehe, G.F. Knoll, Temperaturedependence of Csl(TI) gamma-ray excited scintillation characteristics, Nucl. Instrum. Methods Phys. Res. A 325 (1993) 147–157.
  • [42] R. Hofstadter, Properties of scintillation materials, Nucleonics 6 (5) (1950)70–72.
  • [43] P. Schotanus, R. Kamermans, P. Dorenbos, Scintillation characteristics ofpure and Tl-doped Csl crystals, IEEE T. Nucl. Sci. 37 (2) (1990) 177–182.
  • [44] J.D. Valentine, W.W. Moses, S.E. Derenzo, D.K. Wehe, G.F. Knoll, Temperaturedependence of CsI(Tl) gamma-ray excited scintillation characteristics, Nucl.Instrum. Methods Phys. Res. A 325 (1-2) (1993) 147–157.
  • [45] C. Fiorini, F. Perotti, Scintillation detection using a silicon drift chamber withon-chip electronics, Nucl. Instrum. Methods Phys. Res. A 401 (1997)104–112.
  • [46] S.K. Landori, G. Hreuss, Scintillation response function and decay time ofCsI(Na) to charged particles, Nucl. Instrum. Meth. 68 (1969) 9–12.
  • [47] P. Brinckmann, CsI(Na) scintillation crystals, Phys. Lett. 15 (4) (1965) 305.
  • [48] D.W. Aitken, B.L. Beron, G. Yenicay, H.R. Zulliger, Fluorescent. Response ofNaI(Tl), CsI(Tl), CsI(Na) and CaF2(Eu) to X-rays and low energy gamma rays,Trans. Nucl. Sci. 14 (1) (1967) 468–477.
  • [49] M.J. Weber, R.R. Monchamp, Luminescence of Bi4Ge3O12: spectral anddecay properties, J. Appl. Phys. 44 (12) (1973) 5495.
  • [50] O.H. Nestor, C.Y. Huang, Bismuth Germanate: a high-Z gamma ray andcharged particle detector, IEEE T. Nucl. Sci. 22 (1975) 68–71.
  • [51] K. Okajima, K. Takami, K. Ueda, F. Kawaguchi, Characteristics of agamma-ray detector using a bismuth germanate scintillator, Rev. Sci. Instrum. 53 (8) (1982) 1285–1286.
  • [52] V.V. Averkiev, V.K. Lyapidevskii, G.Kh. Salakhutdinov, Spectrometriccharacteristics of bismuth-germanate detectors in X-ray andgamma-quantum energy range of from 4.5 to 662 keV, Prib. Tekh. Eksp. 4(1990) 80.
  • [53] M. Kobayashi, M. Ishii, Y. Usuki, H. Yahagi, Cadmium Tungstate scintillatorswith excellent radiation hardness and low background, Nucl. Instrum.Methods Phys. Res. A 349 (2-3) (1994) 407–411.
  • [54] D.R. Kinloch, W. Novak, P. Raby, I. Toepke, New developments in cadmiumtungstate, IEEE T. Nucl. Sci. 41 (4) (1994) 752–754.
  • [55] T. Fazzini, et al., Pulse-shape discrimination with CdWO-4 crystalscintillators, Nucl. Instrum. Methods Phys. Res. A 410 (1998) 213–219.
  • [56] P. Schtanus, et al., Temperature dependence of BaF2 scintillation light yield, Nucl. Instrum. Methods Phys. Res. A 238 (1985) 564–565.
  • [57] P. Dorenbos, et al., Scintillation properties of some Ce3+ and Pr3+ dopedinorganic crystals, IEEE T. Nucl. Sci. 40 (4) (1993) 388–394.
  • [58] F.S. Goulding, B.G. Harvey, Identification of nuclear particles, Ann. Rev. Nucl.Sci. 35 (1975) 167–240.
  • [59] A.G. Seamster, R.E.L. Green, R.G. Korteling, Silicon detector Delta(e), eparticle identification: a theoretically based analysis algorithm and remarkson the fundamental limits to the resolution of particle type by Delta(e), emeasurements, Nucl. Instrum. Meth. 145 (1977) 583–591
  • [60] N.N. Ershov, N.G. Zakharov, P.A. Rodnyi, Spectral-kinetic study of theintrinsic luminescence characteristics of a fluorite-type crystal, Opt.Spectrosk. 53 (1) (1982) 51–54.
  • [61] P. Dorenbos, J.T.M. de Haas, R. Visser, C.W.E. van Eijk, R.W. Hollander,Absolute light yield measurements on BaF2 crystals and the quantumefficiency of several photomultiplier tubes, IEEE T. Nucl. Sci. 40 (4) (1993)424–430.
  • [62] S. Kubota, S. Sakuragi, S. Hashimoto, J. Ruan (Gen), A new scintillationmaterial: pure CsI with 10 ns decay time, Nucl. Instrum. Methods Phys. Res.A 268 (1988) 275–277.
  • [63] S.K. Landori, et al., Decay time measurements on’ Pure’ CsI scintillatorsprepared by different methods, Nucl. Instrum. Methods Phys. Res. A 303(1991) 374–380.
  • [64] P. Schotanus, R. Kamermans, P. Dorenbos, Scintillation characteristics ofpure and T1-doped CsI crystals, IEEE T. Nucl. Sci. 37 (2) (1990) 177.
  • [65] M.M. Hamada, Y. Nunoya, S. Kubota, S. Sakuragi, Suppression of the slowemission component in pure CsI by heat treatment, Nucl. Instrum. MethodsPhys. Res. A 365 (1995) 98–103.
  • [66] C.L. Woody, J.A. Kierstead, P.W. Levy, S. Stoll, Radiation damage in BaF2 crystals, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc. 39 (4) (1992)515–523.
  • [67] W.W. Moses, S.E. Derenzo, Cerium fluoride, a new fast, heavy scintillator, IEEE T. Nucl. Sci. 36 (1) (1989) 173–176.
  • [68] D.F. Anderson, Cerium fluoride: a scintillator for high-rate applications,Nucl. Instrum. Meth. A 287 (1990) 606.
  • [69] E. Auffray, et al., Extensive studies on CeF3 crystals, a good candidate forelectromagnetic calorimetry at future accelerators, Nucl. Instrum. MethodsPhys. Res. A 383 (1996) 367–390.
  • [70] H. Ishibashi, et al., Scintillation per- formance of large Ce-doped GSO singlecrystal, IEEE T. Nucl. Sci. 45 (3) (1998) 518.
  • [71] M. Tanaka, et al., Applications of cerium-doped gadolinium silicateGd-2 SiO-5:Ce scintillator to calorimeters in high-radiation environment, Nucl. Instrum. Methods Phys. Res. A 404 (1998) 283–294.
  • [72] S. Nakayama, et al., GSO-detector system “NYMPHS” for (7Li,7Be- ) reactionat intermediate energies, Nucl. Instrum. Methods Phys. Res. A 404 (1998)34–40.
  • [73] K. Takagi, T. Fukazawa, Cerium-activated Gd2SiO5 single crystal scintillator,Appl. Phys. Lett. 42 (1) (1983) 43–45.
  • [74] H. Ishibashi, K. Shimizu, K. Susa, S. Kubota, Cerium doped GSO scintillatorand its application to position sensitive detectors, IEEE T. Nucl. Sci. 36(1989) 170–172.
  • [75] C.L. Melcher, J.S. Schweitzer, T. Utsa, S. Akiyama, Scintillation properties ofGSO, IEEE T. Nucl. Sci. 37 (2) (1990) 161–164.
  • [76] C.L. Melcher, J.S. Schweitzer, R.A. Manente, C.A. Peterson, Applicability ofGSO scintillators for well logging, .IEEE T. Nucl. Sci. 38 (2) (1991) 506–509.
  • [77] M. Moszynski, et al., Absolute light output of scintillators, IEEE T. Nucl. Sci.44 (3) (1997) 1052–1061.
  • [78] M. Moszynski, et al., Properties of the YAP: Ce scintillator, Nucl. Instrum.Methods Phys. Res. A 404 (1998) 157–165.
  • [79] J.A. Kierstead, S.P. Stoll, C.L. Woody, Light output and radiation damage in aYA1O3:Ce crystal, Mater. Res. Soc. Symp. Proc. 348 (1994) 469–473.
  • [80] E.V.D. van Loef, Stratech Report IR I-ISO-990033, Radiation TechnologyGroup, Delft University of Technology, 1999.
  • [81] J. Seguinot, J. Tishhauser, T. Ypsilantis, Liquid xenon scintillation: photonyield and Fano factor measurements, Nucl. Instrum. Methods Phys. Res. A354 (1995) 280–287.
  • [82] T. Ludziejewski, et al., Advantages and limitations of LSO scintillator innuclear physics experiments, IEEE T. Nucl. Sci. 42 (4) (1995) 328–336.
  • [83] P. Dorenbos, et al., Non-linear response in the scintillation yield of Lu2SiO5:Ce3+, IEEE T. Nucl. Sci. 41 (4) (1994) 735–737.
  • [84] M. Moszynski, et al., Properties of new LuAP:Ce scintillator, Nucl. Instrum.Methods Phys. Res. A 385 (1997) 123–131.
  • [85] A. Lempicki, et al., LuAlO3:Ce and other aluminate scintillators, IEEE T. Nucl.Sci. 42 (4) (1995) 280–284.
  • [86] K.S. Shah, P. Bennett, M.R. Squillante, Gamma ray detection properties oflutetium aluminate scintillators, IEEE T. Nucl. Sci. 43 (3) (1996) 1267–1270.
  • [87] S. Brollo, G. Zanella, R. Zannoni, Light yield in cerium scintillating glassesunder X-ray excitation, Nucl. Instrum. Methods Phys. Res. A 293 (1990) 601–605.
  • [88] M. Atkinson, J. Fent, C. Fisher, P. Freund, P. Hughes, J. Kirkby, A. Osthoff, K.Pretzl, Initial tests of a high resolution Scintillating Fibre (SCIFI) tracker, Nucl. Instrum. Methods Phys. Res. A 254 (3) (1987) 500–514.
  • [89] S. Sakamoto, A Li-glass scintillation detector for thermal-neutron TOF measurements Nucl, Instrum. Meth. A 299 (1-3) (1990) 182–186.
  • [90] V. Ryzhikov, V. Chernikov, L. GalÕchinetskii, S. Galkin, E. Lisetskaya, A.Opolonin, V. Volkov, The use of semiconductor scintillation crystal AII-BVI inradiation instruments, J. Cryst. Growth 197 (3) (1999) 655–658.
  • [91] A. Owens, A. Peacock, Compound semiconductor radiation detectors, Nucl.Instrum. Methods Phys. Res. A 531 (2004) 18–37.
  • [92] W.G. Lee, Y.K. Kim, J.K. Kim, H.J. Seo, V. Ryzhikov, N. Starzhinskiy, O.VyaginK. Katrinov, O. Zelenskaya, Particularities of ZnSe-Based scintillators for aspectrometry of charged particles and gamma quanta, J. Korean Phys. Soc.48 (1) (2006) 47–50.
  • [93] V.D. Ryzhikov, L.P. Gal’chinetskii, N.G. Starzhinskiy, E.A. Danshin, K.A.Katrunov, V.V. Chernikov, Combined Detectors of Charged Particles Based onZinc Selenide Scintillators and Silicon Photodiodes, 5, 2001, C174–C176 (39)http://www.kipt.kharkov.ua/conferences/ihepnp/17workshop res/N5/58 5.pdf.
  • [94] K. Katrunov, V. Ryzhikov, V. Gavrilyuk, S. Naydenov, O. ZnSe Lysetska, V.Litichevsky, Optimum design calculations for detectors based (Te,O) scintillators, Nucl. Instrum. Methods Phys. Res. A 712 (2013) 126–129.
  • [95] V. Ryzhikov, N. Starzhinskiy, L. Gal’chinetskii, P. Gáshin, D. Kozin, E. Danshin,New semiconductor scintillators ZnSe(Te,O) and integrated radiationdetectors based thereon, IEEE T. Nucl. Sci. 48 (3) (2001) 356–359.
  • [96] V. Ryzhikov, N. Starzhinskiy, Properties and pecular features of applicationof isoelectronically doped A2B6 compound –based scintillators, J. KoreaAsso. Rad. Prot. 30 (2) (2005) 77–84.
  • [97] Y.H. Cho, et al., Comparative study of a CsI and a ZnSe(Te/O) scintillationdetector’s properties for a gamma-ray measurement, J. Nucl. Sci. Technol. 5(2008) 534–537.
  • [98] R. Baltramiejunas, V.D. Ryzhikov, G. Raciukaitis, V. Gavryushin, D. Juodzbalis, A. Kazlauskas, Centres of radiative and nonradiative recombination inisoelectronically doped ZnSe:Te crystal, Physica 185 (1993) 245–249.
  • [99] V.D. Ryzhikov, Scintillation Crystals of AB Semiconductors: Production,Properties and Applications, NIITEKHIM, Moscow, 1989.
  • [100] V. Ryzhikova, G. Tamulaitisb, N. Starzhinskiya, L. Gal’chinetskiia, A.Novickovasb, K. Kazlauskasb, Luminescence dynamics in ZnSeTescintillators, J. Lumin. 101 (2003) 45–53.
  • [101] V.D. Ryzhikov, V.I. Silin, Starzhinsky, A new ZnSe1-x Tex scintillator:luminescence mechanism, Nucl. Tracks Rad. Meas. 21 (1) (1993) 53–54.
  • [102] R. Baltramiejuas, V.D. Ryzhikov, V. Gavryushin, A. Kazlauskas, G. Raciukaitis,V.I. Silin, D. Juodzbalis, V. Stepankevicius, Luminescent and nonlinearspectroscopy of recombination centres in isovalent doped ZnSe:Te crystals,J. Lumin. 52 (1992) 71–81.
  • [103] A. Waag, F. Fischer, H.J. Lugauer, Th. Litz, J. Laubender, U. Lunz, U. Zehnder,W. Ossau, T. Gerhardt, M. Moeller, G. Landwehr, Determination of thedispersion of the index of refraction and the elastic moduli formolecular-beam-epitaxy-grown Zn1-x BexSe alloys, J. Appl. Phys. 80 (1996)792.
  • [104] C. Verie, Beryllium substitution-mediated covalency engineering of II-VIalloys for lattice elastic rigidity reinforcement, Mater. Sci. Eng. B 43 (1997) 60.
  • [105] L.V. Atroshchenko, L.P. Gal’chinetskii, S.N. Galkin, V.D. Ryzhikov, V.I. Silin,Structure defects and phase transition in tellurium-doped ZnSe crystals, J.Cryst. Growth 197 (3) (1999) 475–479.
  • [106] P. Vitta, G. Tamulaitis, D. Shevchenko, A. Zukauskas, N. Starzhinskiy, K.Katrunov, V. Ryzhikov, Luminescence study of ZnSe based scintillators infrequency domain, Lith. J. of Phys. 48 (3) (2008) 243–247.
  • [107] K.A. Katrunov, N.G. Starzhinskiy, Yu.V. Malyukin, V.I. Silin, I.M. Zenya, G.Tamulaitis, Effect of rare-earth elements on luminescence properties ofZnSe-based Chalcogenide scintillators, Nucl. Instrum. Methods Phys. Res. A622 (2010) 139–141.
  • [108] V. Ryzhikov, B. Grinyov, S. Galkin, N. Starzhinskiy, I. Rybalka, Growingtechnology and luminescent characteristics of ZnSe doped crystals, J. Cryst.Growth 364 (2013) 111–117.
  • [109] A.A. Focsha, P.A. Gashin, V.D. Ryzhikov, N.G. Starzhinskiy, L.P. Galchinetskii,V.I. Silin, Properties of semiconductor scintillators and combined detectorsof ionizing radiation based on ZnSe(Te,O) /pZnTe–nCdSe structures, Opt.Mater. (Amst.) 19 (2002) 213–217.
  • [110] V.P. Makhniy, M.M. Sletov, I.V. Tkachenko, Technical physics, greenluminescence in diffusion-doped layers of zinc selenide, Tech. Phys. 49 (6)(2004) 798–799.
  • [111] V.P. Makhniy, M.M. Sletov, I.V. Tkachenko, Effect of vacuum annealing onthe edge luminescence of undoped zinc selenide, Semiconductors 38 (9)(2004) 996–997.
  • [112] W.G. Lee, Y.K. Kim, J.K. Kim, N. Starzhinsky, V. Ryzhikov, B. Grinyov, Growthand properties of new ZnSe (Al,O,Te) semiconductor scintillators, Radiat.Meas. 43 (2008) 502–505.
  • [113] L.V. Borkovska, T.R. Stara, N.O. Korsunska, К.Yu. Pecherska, L.P. Germash,V.O. Bondarenko, Effect of thermal annealing on the luminescentcharacteristics of CdSe/ZnSe quantum dot heterostructures, Semicond. Phys.Quantum Electron. Optoelectron. 13 (2) (2010) 202–208.
  • [114] E.M. Dianov, P.A. Trubenko, E.E. Filimonov, E.A. Shcherbakov, Effect ofthermal annealing on the luminescence properties of ZnCdSe/ZnSe quantumwell structures, Semiconductors 31 (2) (1997) 186–188.
  • [115] M. Kavitha, M. Saroja, G. Jenifer, The annealing effect of zinc selenide thinfilm using CBD technique for PV solar cell application, Int. J. Mater. Sci. Eng.5 (3) (2017) 110–115.
  • [116] P.P. Hankare, P.A. Chate, D.J. Sathe, P.A. Chavan, V.M. Bhuse, Effect of thermalannealing on properties of zinc selenide thin films deposited by chemicalbath deposition, J. Mater. Sci.- Mater. El. 20 (4) (2009) 374–379.
  • [117] D. Tonnies, G. Bacher, A. Forchel, A. Waag, Th. Litz, D. Hommel, Ch. Becker, G.Landwehr, M. Heuken, M. Scholl, Optical study of interdiffusion in CdTe and ZnSe based quantum wells, J. Cryst. Growth 138 (1-4) (1994) 362–366.
  • [118] A.A. Khurram, F. Jabar, M. Mumtaz, N.A. Khan, M. Nasir Mehmood, Effect oflight, medium and heavy ion irradiation on the structural and electricalproperties of ZnSe thin films, Nucl. Instrum. Methods Phys. Res. B 313(2013) 40–44.
  • [119] V.D. Ryzhikov, N.G. Starzhinskiy, L.P. Galchinetskii, M. Guttormsen, A.A. Kist, W. Klamra, Behaviour of newZnSe (Te,O) semiconductor scintillators underhigh doses of ionizing radiations, IEEE T. Nucl. Sci. 48 (4) (2001) 1561–1564.
  • [120] G. Sharma, S.W. Gosavi, S.P. Lochab, N. Singh, Effect of swift heavy ionirradiation on Ce doped CaS nanophosphors, AIP Conf. Proc. 1391 (1) (2011)558–560.
  • [121] H.A. Khawal, B.N. Dole, A study of the 160 MeV Ni7+swift heavy ionirradiation of defect creation and shifting of the phonon modes on MnxZn1–xO thin films, R. Soc. Chem. 7 (2017) 34736–34745.
  • [122] V. Kumar, R.G. Singh, L.P. Purohit, F. Singh, Effect of swift heavy ion onstructural and optical properties of undoped and doped nanocrystalline zincoxide films, Adv. Mat. Lett. 4 (6) (2013) 423–427.
  • [123] http://shodhganga.inflibnet.ac.in/bitstream/10603/23484/3/03.chapter%201.pdf, reference last accessed on 15/03/2018.
  • [124] T. Takagahara, K. Takeda, Theory of the quantum confinement effect onexcitons in quantum dots of indirect-gap materials, Phys. Rev. B 46 (3)(1992) 15578, http://dx.doi.org/10.1103/PhysRevB.46.15578 (R).
  • [125] R. Koole, E. Groeneveld, D. Vanmaekelbergh, A. Meijerink and C. D. M.Donegá, Chapter 2: Size Effects on Semiconductor Nanoparticles, in:Nanoparticles- Workhorses of Nanoscience https://doi.org/10.1007/978-3-662-44823-6.
  • [126] A.D. Yoffe, Low –dimentional systems: quantum size effect and electronicproperties of semiconductor microcrystallites (zero-dimentional system)and some quasi-two-dimentional systems, Adv. Phys. 42 (2) (1993)173–262.
  • [127] S.E. Létant, T.F. Wanga, First study of nano-composite scintillators underalpha irradiation, Appl. Phys. Lett. (2005), accessed on 15/03/2018 https://e-reports-ext.llnl.gov/pdf/320831.pdf,last.
  • [128] S. Baskoutas, A.F. Terzis, Size-dependent band gap of colloidal quantumdots, J. Appl. Phys. 99 (2006), 013708, http://dx.doi.org/10.1063/1.2158502.
  • [129] S.E. Letant, T.-F. Wang, Semiconductor quantum dot scintillation under -ray irradiation, Nano Lett. 6 (12) (2006) 2877–2880.
  • [130] P. Martyniuk, A. Rogalski, Review Quantum-dot infrared photodetectors : status and outlook, Prog. Quant. Electron. 32 (3-4) (2008) 89–120.
  • [131] J. Sinclair, An Introduction to Quantum Dots: Confinement, Synthesis,Artificial Atoms and Applications, 2009, http://sces.phys.utk.edu/˜dagotto/condensed/HW2 2009/Quantum Dots.pdf,reference last accessed on 15/03/2018.
  • [132] L. Winslow and R. Simpson, Characterizing quantum-dot-doped liquidscintillator for applications to neutrino detectors, arXiv:1202.4733[physics.ins-det], https://doi.org/10.1088/1748-0221/7/07/P07010.
  • [133] O. Yoshitaka, Solar Quest, Tokyo, 19-21 October Nature Photonics Technology Conference2010, Nature Photonics Technology Conference(2010).
  • [134] L. Brus, Electronic wave functions in semiconductor clusters: experimentand theory, J. Phys. Chem. 90 (12) (1986) 2555–2560.
  • [135] E.O. Chukwuocha, M.C. Onyeaju, T.S.T. Harry, Theoretical studies on theeffect of confinement on quantum dots using the brus equation, World J.Condens. Matter Phys. 2 (2012) 96–100.
  • [136] D.J. Norris, A. Sacra, C.B. Murray, M.G. Bawendi, Measurement of the sizedependent hole spectrum in CdSe quantum dots, Phys. Rev. Lett. 72 (16)(1994) 2612–2615.
  • [137] M. Longo, N. Lovergine, A.M. Mancini, A. Passaseo, G. Leo, M. Mazzer, M.Berti, A.V. Drigo, Self-organized growth of ZnTe nanoscale islands on (001)GaAs, Appl. Phys. Lett. 72 (3) (1998) 359.
  • [138] H. Nashiki, I. Suemune, H. Suzuki, K. Uesugi, Luminescence of excitonsocalized by monolayer interface fluctuations in ZnSe/MgS superlatticesgrown by etalorganic vapor phase epitaxy, Jpn. J. Appl. Phys. 36 (6B) (1997)4199, Part 1.
  • [139] I. Suemune, T. Tawara, T. Saitoh, K. Uesugi, Stability of CdSe and ZnSe dots self-organized on semiconductor surfaces Research Institute for ElectronicScience, Appl. Phys. Lett. 71 (26) (1997) 3886–3888.
  • [140] S. Tanaka, H. Kumano, I. Suemune, T. Tawara, Growth and luminescenceproperties of self-organized ZnSe quantum dots, Appl. Phys. Lett. 75 (2)(1999) 235–237.
  • [141] M.A. Hines, P.G. Sionnest, Bright UV-blue luminescent colloidal ZnSeanocrystals, J. Phys. Chem. B 102 (19) (1998) 3655–3657.
  • [142] D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller,HighlyLuminescent monodisperse CdSe and CdSe/ZnS nanocrystalssynthesized in hexadecylamine trioctylphosphine oxide trioctylphospinemixture, Nano Lett. 1 (4) (2001) 207–211.
  • [143] L. Qu, Z.A. Peng, X. Peng, Alternative routes toward high quality CdSe nanocrystals, Nano Lett. 1 (6) (2001) 333–337.
  • [144] Z.A. Peng, X. Peng, Formation of high-quality CdTe, CdSe, and CdSnanocrystals using CdO as precursor, J. Am. Chem. Soc. 123 (1) (2001)183–184.
  • [145] N. Murasea, M. Gao, Preparation and photoluminescence ofwater-dispersible ZnSe nanocrystals, Mater. Lett. 58 (30) (2004) 3898–3902.
  • [146] H. Qian, X. Qiu, L. Li, J. Ren, Microwave-assisted aqueous synthesis: a rapidapproach to prepare highly luminescent ZnSe(S) alloyed quantum dots, J.Phys. Chem. B 110 (2006) 9034–9040.
  • [147] M.F. Budykaa, O.V. Chaschikhina, P.A. Nikulinb, Effect of coordinating ligandon spectral-luminescent properties of CdS quantum dots in microwavesynthesis, Nanotechnol. Russ. 10 (1-2) (2015) 13–17.
  • [148] M. Green, The nature of quantum dot capping ligands, J. Mater. Chem. 20(2010) 5797–5809.
  • [149] T.M. Inerbaev, A.E. Masunov, S.I. Khondaker, A. Dobrinescu, A.-V. Plamada, Y.Kawazoe, Quantum chemistry of quantum dots: effects of ligands andoxidation, J. Chem. Phys. 131 (4) (2009), 044106.
  • [150] N.I. Hammer, T. Emrick, M.D. Barnes, Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics, Nanoscale Res. Lett. 2 (6) (2007) 282–290.
  • [151] A.V. Nomoev, S.P. Bardakhanov, M. Schreiber, D.G. Bazarova, N.A. Romanov,B.B. Baldanov, B.R. Radnaev, V.V. Syzrantsev, Structure and mechanism ofthe formation of core–shell nanoparticles obtained through a one-stepgas-phase synthesis by electron beam evaporation, Beilstein J. Nanotechnol. 6 (2015) 874–880.
  • [152] R.G. Chaudhuri, S. Paria, Core/Shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev. 112(2012) 2373–2433.
  • [153] X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, Epitaxial growth ofhighly luminescent CdSe/CdS core/shell nanocrystals with photostabilityand electronic accessibility, J. Am. Chem. Soc. 119 (30) (1997)7019–7029.
  • [154] H. Bao, Y. Gong, Z. Li, M. Gao, Enhancement effect of illumination on thephotoluminescence of water-soluble CdTe nanocrystals: toward highlyfluorescent CdTe/CdS core-shell structure, Chem. Mater. 16 (20) (2004)3853–3859.
  • [155] H.V. Demir, I.M. Soganci, E. Mutlugun, CdSe/ZnS core-shell nanocrystalbased scintillators for enhanced detection in UV, Proceedings of IEEE Lasersand Electro-Optics Society 2006 Annual Meeting (LEOS) (2006), Paper WN3.
  • [156] L.S. Li, N. Pradhan, Y. Wang, X. Peng, High quality ZnSe and ZnS nanocrystalsformed by activating zinc carboxylate precursors, Nano Lett. 4 (11) (2004) 2261–2264.
  • [157] N. Pradhan, X. Peng, Efficient and color-tunable Mn-Doped ZnSe nanocrystalemitters: control of optical performance via greener synthetic chemistry, J.Am. Chem. Soc. 129 (2007) 3339–3347.
  • [158] P. Reiss, ZnSe based colloidal nanocrystals: synthesis, shape control, core/shell, alloy and doped systems, New J. Chem. 31 (2007) 1843–1852.
  • [159] N. Pradhan, D. Goorskey, J. Thessing, X. Peng, An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals, J. Am. Chem. Soc. 127 (2005) 17586–17587.
  • [160] S. Acharya, D.D. Sarma, N.R. Jana, N. Pradhan, An alternate route tohigh-quality ZnSe and Mn-doped ZnSe nanocrystals, J. Phys. Chem. Lett. 1(2) (2010) 485–488.
  • [161] D.J. Norris, N. Yao, F.T. Charnock, T.A. Kennedy, High-quality manganese-doped ZnSe nanocrystals, Nano Lett. 1 (1) (2001) 3–7.
  • [162] L.J. Zhang, X.-C. Shen, H. Liang, F.-Y. Chena, H.-J. Huang, Phosphine-freesynthesis of ZnSe:Mn and ZnSe:Mn/ZnS doped quantum dots using new Seand S precursors, New J. Chem. 38 (1) (2014) 448–454.
  • [163] L. Chen, Y. Jiang, C. Wang, X. Liu, Y. Chen, J. Jie, Green chemical approaches to ZnSe quantum dots: preparation, characterisation and formationmechanism, J. Exp. Nanosci. 5 (2) (2010) 106–117.
  • [164] Z. Deng, F.L. Lie, S. Shen, I. Ghosh, M. Mansuripur, A.J. Muscat, Water-basedroute to ligand-selective synthesis of ZnSe and Cd-Doped ZnSe quantumdots with tunable ultraviolet a to blue photoluminescence, Langmuir 25 (1)(2009) 434–442.
  • [165] Michael Z. Hu, T. Zhu, Semiconductor nanocrystal quantum dot synthesisapproaches towards large–scale industrial production for energyapplications, Nanoscale Res. Lett. 10 (1) (2015) 469, http://dx.doi.org/10.1186/s11671-015-1166-y.
  • [166] S.E. Létant, T.-F. Wanga, Study of porous glass doped with quantum dots orlaser dyes under alpha irradiation, Appl. Phys. Lett. 88 (2006), 103110.
  • [167] D.E. Persyk, M.A. Schardt, T.E. Moi, K.A. Ritter, G. Muehllehner, Research onpure Sodium Iodide as a practical scintillator, IEEE T. Nucl. Sci 27 (1980)168–171.
  • [168] http://users.df.uba.ar/sgil/labo5 uba/recursos/Gama ray detec camberra.pdf, last accessed on 17/03/2018.
  • [169] M. Moszynski, M. Balcerzyk, W. Czarnacki, M. Kapusta, W. Klamra, P.Schotanus, A. Syntfeld, M. Szawlowski, Study of pure NaI at room and liquidnitrogen temperatures, IEEE T. Nucl. Sci. 50 (4) (2003) 767–773.
  • [170] W.H. Berninge, Monolithic gamma detector arrays and position sensitivedetectors in high purity germanium, IEEE Trans. Plasma Sci. IEEE Nucl.Plasma Sci. Soc. 21 (1) (1974) 374–378.
  • [171] V.L. Ouvrier-Buffet, P.F. Mathy, G. Montemont, M. Picone, J. Rustique, C.Riffard, Performance of a new CdZnTe portable spectrometric system forhigh energy applications, IEEE T. Nucl. Sci. 52 (2005) 1733–1738.
  • [172] R.Z. Stodilka, J.J.L. Carson, K. Yu, Md.B. Zaman, C. Li, D. Wilkinson, Opticaldegradation of CdSe/ZnS quantum dots upon gamma-ray irradiation, J. Phys.Chem. C 11 (2009) 2580–2585.
  • [173] P. Schotanus, P. Dorenbos, V. Ryzhikov, Detection of CdS(Te) and ZnSe(Te)scintillation light with silicon photodiodes, IEEE Trans. Nucl. Sci. NS 39 (4)(1992) 546.
  • [174] V.D. Ryzhikov, C.F. Smith, B.V. Grinyov, Detection of gamma-neutronradiation by novel solid-state scintillation detectors, in: ANIMMA Conference, 2015, 147.
  • [175] B.V. Grinyov, V.D. Ryzhikov, S.V. Naydenov, A.D. Opolonin, E.K. Lisetskaya, S.N. Galkin, P. Lecoq, Medical dual-energy imaging of bone tissues using ZnSe-based scintillator-photodiode detectors, in: IEEE Nucl. Sci. Symp. Conf.Rec., 2006.
  • [176] B.V. Grinyov, V.D. Ryzhikov, S.V. Naydenov, C.F. Smith, A.D. Opolonin, E.K.Lisetskaya, N.A. Shumeiko, N.L. Kurna, G.M. Onischenko, S.E. Tretyak, S.N.Galkin, E.F. Voronkin, Radiation detectors scintillator-photodiode on thebase of A2B6 crystals for application in homeland security and medical equipment, in: IEEE Nucl. Sci. Symp. Conf. Rec., 2006.
  • [177] F. Ferroni, E. Mihokova, I. Dafinei, M. Fasoli, F. Orio, S. Pirro, A. Vedda, Low temperature scintillation in ZnSe crystals, IEEE T. Nucl. Sci. 57 (3) (2010)1470–1474.
  • [178] V. Littichevskyi, S. Galkin, O. Lalaiants, E. Voronkin, I. Breslavskiy, S. Tretiak,N. Kosinov, Scintillation panels based on zinc selenide and oxidescintillators, AIP Conf. Proc. 18 (3) (2011) 391–396.
  • [179] M. Ramírez, N. Martínez, J. Marcazzó, P. Molina, D. Feld, M. Santiago,Performance of ZnSe(Te) as fiber optic dosimetry detector, Appl. Radiat. Isot.116 (2016) 1–7.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b62754eb-87e8-4ed3-999f-7a9c663ef2c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.