PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Photoluminescence of HgCdTe nanostructures grown by molecular beam epitaxy on GaAs

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Photoluminescence (PL) of HgCdTe-based hetero-epitaxial nanostructures with 50 to 1100 nm-wide potential wells was studied. The nanostructures were grown by molecular beam epitaxy on GaAs substrates. A strong degree of alloy disorder was found in the material, which led to the broadening of the PL spectra and a considerable Stokes shift that could be traced up to temperature T~230 K. Annealing of the structures improved the ordering and led to the increase in the PL intensity. A remarkable feature of the PL was an unexpectedly small decrease of its intensity with temperature increasing from 84 to 300 K. This effect can be related to localization of carriers at potential fluctuations and to the specific character of Auger-type processes in HgCdTe-based nanostructures.
Twórcy
autor
  • R&D Institute for Materials SRC “Carat”, 202 Stryjska St., 79031 Lviv, Ukraine
autor
  • R&D Institute for Materials SRC “Carat”, 202 Stryjska St., 79031 Lviv, Ukraine
  • Ioffe Physical-Technical Institute of RAS, 26 Polytechnicheskaya St., 194021 St.-Petersburg, Russia
  • Ioffe Physical-Technical Institute of RAS, 26 Polytechnicheskaya St., 194021 St.-Petersburg, Russia
  • Ioffe Physical-Technical Institute of RAS, 26 Polytechnicheskaya St., 194021 St.-Petersburg, Russia
  • A. V. Rzhanov Institute of Semiconductor Physics, Siberian Branch of RAS, 13 ac. Lavrentieva St., 630090 Novosibirsk, Russia
  • A. V. Rzhanov Institute of Semiconductor Physics, Siberian Branch of RAS, 13 ac. Lavrentieva St., 630090 Novosibirsk, Russia
  • A. V. Rzhanov Institute of Semiconductor Physics, Siberian Branch of RAS, 13 ac. Lavrentieva St., 630090 Novosibirsk, Russia
  • R&D Institute for Materials SRC “Carat”, 202 Stryjska St., 79031 Lviv, Ukraine
  • Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia
Bibliografia
  • 1. C. R. Tonheim, A. S. Sudbø, E. Selvig, and R. Haakenaasen, “Enhancement in light emission from Hg-Cd-Te due to surface patterning”, IEEE Photonic Techn. L. 23, 36-38 (2011).
  • 2. J. P. Zanatta, F. Noel, P. Ballet, N. Hdadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe molecular beam epitaxy material for microcavity light emitters: application to gas detection in the 2-6 μm range”, J. Electron. Mater. 32, 602-607 (2003).
  • 3. N. L. Bazhenov, V. I. Ivanov-Omskii, A. I. Izhnin, and V. A. Smirnov, “Quantum yield of CdHgTe solid solutions“, Sov. Phys. Semicond. 25, 667-668 (1991).
  • 4. Y. Jiang, M. C. Teich, and W. Wang, “Carrier lifetimes and threshold currents in HgCdTe double heterostructures and multi-quantum-well lasers”, J. Appl. Phys. 69, 6869-6875 (1991).
  • 5. R. D. Feldman, C. L. Cesar, M. N. Islam, R. F. Austin, A. E. Di Giovanni, J. Shah, R. Spitzer, and J. Orenstein, “Hg1-xCdxTe based quantum wells for the 3-μm wavelength region”, J. Vac. Sci. Technol. B7, 431-434 (1989).
  • 6. K. K. Mahavadi, S. Sivananthan, M. D. Lange, X. P. Chu, J. Bleuase, and J. P. Faurie, “Stimulated emission from a Hg1-xCdxTe epilayer and CdTe/Hg1-xCdxTe heterostructures grown by molecular beam epitaxy”, J. Vac. Sci. Technol. A8, 1210-1214 (1990).
  • 7. E. Monterrat, L. Ulmer, R. Mallard, N. Magnea, J. L. Pautrat, and H. Mariette, “Molecular beam epitaxy growth and characterization of CdxHg1-xTe (0.4
  • 8. E. Hadji, J. Bleuse, N. Magnea, and J. L. Pautrat, “3.2 μm infrared resonant cavity light emitting diode”, Appl. Phys. Lett. 67, 2591-2593 (1995).
  • 9. E. Hadji, E. Picard, C. Roux, E. Molva, and P. Ferret, “3.2 μm microcavity light emitter for gas detection”, Optics Lett. 25, 725-727 (2000).
  • 10. E. Hadji, J. Bleuse, N. Magnea, and J. L. Pautrat, “Photopumped infrared vertical-cavity surface-emitting laser”, Appl. Phys. Lett. 68, 2480-2482 (1996).
  • 11. M. Kinch, “HgCdTe: recent trends in the ultimate IR semiconductor”, J. Electron. Mater. 39, 1043-1052 (2010).
  • 12. J. Shao, L. Chen, W. Lu, X. Lu, L. Zhu, S. Guo, L. He, and J. Chu, “Backside-illuminated infrared photoluminescence and photoreflectance: probe of vertical nonuniformity of HgCdTe on GaAs”, Appl. Phys. Lett. 96, 121915 (2010).
  • 13. X. Zhang, J. Shao, L. Chen, X. Lu, S. Guo, L. He, and J. Chu, “Infrared photoluminescence of arsenic-doped HgCdTe in a wide temperature range of up to 290 K”, J. Appl. Phys. 110, 043503 (2011).
  • 14. K. D. Mynbaev, N. L. Bazhenov, V. I. Ivanov-Omski, N. N. Mikhailov, M. V. Yakushev, A. V. Sorochkin, S. A. Dvoretsky, V. S. Varavin, and Yu. G. Sidorov, “Photoluminescence of HgCdTe-based heterostructures grown by molecular-beam epitaxy”, Semiconductors 45, 872-879 (2011).
  • 15. V. I. Ivanov-Omskii, K. D. Mynbaev, N. L. Bazhenov, V. A. Smirnov, N. N. Mikhailov, G. Yu. Sidorov, V. G. Remesnik, V. S. Varavin, and S. A. Dvoretsky, “Optical properties of molecular beam epitaxy-grown HgCdTe structures with potential wells”, Phys. Stat. Sol. C7, 1621-1623 (2010).
  • 16. I. I. Izhnin, A. I. Izhnin, H. V. Savytskyy, O. I. Fitsych, N. N. MIkhailov, V. S. Varavin, S. A. Dvoretsky, Yu. G. Sidorov, and K. D. Mynbaev, “Defects in HgCdTe grown by molecular beam epitaxy on GaAs substrates”, Opto-Electron. Rev. 20, 375-378 (2012).
  • 17. I. I. Izhnin, K. D. Mynbaev, M. V. Yakushev, A. I. Izhnin, E. I. Fitsych, N. L. Bazhenov, A. V. Shilyaev, G. V. Savitskii, R. Jakiela, A. V. Sorochkin, V. S. Varavin, and S. A. Dvoretskii, “Electrical and optical properties of CdHgTe films grown by molecular-beam epitaxy on silicon substrates”, Semiconductors 46, 1341-1345 (2012).
  • 18. N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, “Growth of Hg1–xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control”, Int. J. Nanotechnology 3, 126-130 (2006).
  • 19. J. P. Laurenti, J. Camassel, A. Bouhemadou, B. Toulouse, R. Legros, and A. Lusson, “Temperature dependence of the fundamental absorption edge of mercury cadmium telluride”, J. Appl. Phys. 67, 6454-6460 (1990).
  • 20. A. Lusson, F. Fuchs, and Y. Marfaing, “Systematic photoluminescence study of CdxHg1-xTe alloys in a wide composition range”, J. Cryst. Growth 101, 673-677 (1990).
  • 21. M. M. Kraus, C. R. Becker, S. Scholl, Y. S. Wu, S. Yuan, and G. Landwehr, “Infrared photoluminescence on molecular beam epitaxially grown Hg1-xCdxTe layers”, Semicond. Sci. Technol. 8, S62-S65 (1993).
  • 22. I. C. Robin, M. Taupin, R. Derone, P. Ballet, and A. Lusson, “Photoluminescence studies of HgCdTe epilayers,” J. Electron. Mater. 39, 868-872 (2010).
  • 23. N. L. Bazhenov, B. E. Zhurtanov, K. D. Mynbaev, A. P. Astakhova, A. N. Imenkov, M. P. Mikhailova, V. A. Smirnov, N. D. Stoyanov, and Yu. P. Yakovlev, “Impact-ionization-stimulated electroluminescence in isotype n-GaSb/n-AlGaAsSb/n-GaInAsSb heterostructures”, Tech. Phys. Lett. 33, 987-989 (2007).
  • 24. G. B. Stringfellow, “Microstructures produced during the epitaxial growth of InGaN alloys”, J. Cryst. Growth 312, 735-749 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b622e810-a0de-4008-be45-9c16a7831237
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.