PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applying a fractional coil model for power system ferroresonance analysis

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses the problem of modeling the nonlinear coil used for ferroresonant circuit analysis. The effect of ferroresonance is described and a general modeling approach is presented. The hysteresis modeling problem is also shortly discussed, on the example of a ferromagnetic coil. A brief overview of available literature and contributors to this area are provided. A series RLC circuit supplied from an AC source is discussed. The application of the fractional derivative in the modeling of an iron core coil is presented and suggestions of model implementations are given. The computations performed are illustrated by means of waveform data obtained from computer simulations and compared with those obtained from measurements performed in a specially prepared laboratory setup.
Rocznik
Strony
467--474
Opis fizyczny
Bibliogr. 47 poz., rys., wykr., tab., fot.
Twórcy
autor
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology, 10 Akademicka St., 44-100 Gliwice, Poland
Bibliografia
  • [1] Ł. Majka and S. Paszek, “Mathematical model parameter estimation of a generating unit operating in the Polish National Power System”, Bull. Pol. Ac.: Tech. 64(2), 409–416 (2016).
  • [2] M. Lewandowski, Ł. Majka, and A. Świetlicka, “Effective estimation of angular speed of synchronous generator based on stator voltage measurement”, International Journal of Electrical Power & Energy Systems 100, 391–399 (2018).
  • [3] S. Paszek and A. Nocoń, “Parameter polyoptimization of PSS2A power system stabilizers operating in a multi-machine power system including the uncertainty of model parameters”, Applied Mathematics and Computation 267, 750–757 (2015).
  • [4] Ph. Ferracci, Ferroresonance, Schneider-electric technical book, 190, Schneider’s Group Technical collection, 1998.
  • [5] IEEE working group on modeling and analysis of systems transients, “Modeling and analysis guidelines for slow transients— part III: the study of ferroresonance”, IEEE Trans. Power Delivery 15, Issue 1, 255–265 (2000).
  • [6] J.A. Corea-Araujo, F. Gonzalez-Molina, J.A. Martinez-Velasco, J.A. Barrado-Rodrigo, and L. Guasch-Pesquer, “Tools for characterization and assessment of ferroresonance using 3-D bifurcation diagrams”, IEEE Trans. Power Delivery 29(6), 2543–2551 (2014).
  • [7] D.A.N. Jacobson, “Examples of Ferroresonance in a High Voltage Power System”, IEEE, Power Engineering Society General Meeting, 2003, DOI: 10.1109/PES.2003.1270499.
  • [8] V. Valverde, G. Buigues, A.J. Mazón, I. Zamora, and I. Albizu, “Ferroresonant Configurations in Power Systems”, Renewable Energies and Power Quality (ICREPQ’12), 1 (10), International Conference on, Santiago de Compostela, Spain, 2012, DOI: 10.24084/repqj10.351 474 RE&PQJ.
  • [9] Zhao-ming Lei, Zuo-jun Liu, He-xu Sun, and Hong-jun Chang, “Research on the Control and Application of Chaos in an Electrical System”, Advances in Machine Learning and Cybernetics, LNAI 3930, Springer-Verlag, Berlin, 142–148 (2006).
  • [10] P. Sowa and K. Łuszcz, “Chaos behavior simulation of the nonlinear dynamic ferroresonance phenomena”, Electrical review R.90(8), 116–121 (2014).
  • [11] S. Seker, T.C. Akinci, and S. Taskin, “Spectral and statistical analysis for ferroresonance phenomenon in electric power systems”, Electrical Engineering 94(2), 117–124 (2012).
  • [12] K. Milicevic, E.K. Nyarko, and I. Biondic, “Chua’s model of nonlinear coil in a ferroresonant circuit obtained using Dommel’s method and grey box modelling approach”, Nonlinear Dyn. 86, 51–63 (2016).
  • [13] J. Kolańska-Płuska and B. Grochowicz, “Modelling of a nonlinear coil with loss in iron using the Runge-Kutta methods”, Archives of Electrical Engineering 65(3), 527–539 (2016).
  • [14] F.B. Amar and R. Dhifaoui, “Study of the Periodic Ferroresonance in the Electrical Power Networks by Bifurcation Diagrams”, International Journal of Electrical Power and Energy Systems 33(1), 61–85 (2011).
  • [15] M. Moradi and A. Gholami, “Harmonic balance based stability domain analysis of period-1 ferroresonance”, Electric Power Components and Systems 39(12), (2011).
  • [16] J.A. Martinez-Velasco (Ed.), Transient Analysis of Power Systems: Solution Techniques, Tools and Applications, Wiley-IEEE Press, John Wiley & Sons, 2015.
  • [17] A. Visintin, Differential Models of Hysteresis, Applied Mathematical Science, Springer-Verlag, New York, 1994.
  • [18] I. Biondić, R. Topalović, and K.Milicević, “Comparison of Basic Ferromagnetic Coil Hysteresis Models”, pp. 67–77, Papers of 33rd International Scientific Conference: Science in Practice, Hochschule f¨ur Angewandte Wissenschaften Wurzburg-Schweinfurt, 2015.
  • [19] S. Cundeva, “A transformer model based on the Jiles-Atherton theory of ferromagnetic hysteresis”, Serbian Journal of Electrical Engineering 5(1), 21–30 (2008).
  • [20] K. Chwastek and J. Szczygłowski, “Estimation methods for the Jiles-Atherton model parameters – a review”, Electrical review R.84(12), 145–148 (2008).
  • [21] A. Benabou, S. Cl´enet, and F. Piriou, “Comparison of Preisach and Jiles-Atherton models to take into account hysteresis phenomenon for finite element analysis”, Journal of Magnetism and Magnetic Materials 261(1–2), 139–160 (2003).
  • [22] D. Carnevale, S. Nicosia, and L. Zaccarian, “Generalized constructive model of hysteresis”, IEEE Transactions on magnetics 42(12), 3809–3817 (2006).
  • [23] J. Voros, “Modeling and identification of hysteresis using special forms of the Coleman-Hodgdon model”, Journal of Electrical engineering 60(2), 100–105 (2009).
  • [24] J.P. Noel, A.F. Esfahani, G. Kerschen, and J. Schoukens, “A nonlinear state-space approach to hysteresis identification”, Mechanical Systems and Signal Processing 84, 171–184 (2017).
  • [25] J.P.A. Bastos, N. Sadowski, J.V. Leite, N.J. Jhoe Batistela, K. Hoffmann, G. Meunier, and O. Chadebec, “A differential permeability 3-D formulation for anisotropic vector hysteresis analysis”, IEEE Transactions on Magnetics 50(2), 341–344 (2014).
  • [26] K. Milicevic, I. Lukacevic, and I. Flegar, “Modeling of nonlinear coil in a ferroresonant circuit”, Electr. Eng. (Archiv fur Elektrotechnik) 91, 51–59 (2009).
  • [27] K. Milicevic, D. Vinko, and Z. Emin, “Identifying ferroresonance initiation for a range of initial conditions and parameters”, Nonlinear Dyn. 66, 755–762 (2011).
  • [28] I. Schafer and K. Kruger, “Modelling of coils using fractional derivatives”, Journal of Magnetism and Magnetic Materials 307, 91–98 (2006).
  • [29] Ł. Majka, “Measurement based inductor modeling for the purpose of ferroresonance analyses”, pp. V-3, Proc. International Conference AMTEE, Trebic, Czech Republic, 2015.
  • [30] Ł. Majka, “Measurement verification of the nonlinear coil models”, pp. 89–90, Proc. 39th International Conference ICSPETO, Ustroń, 2016.
  • [31] Ł. Majka, “Measurements and simulation for a ferroresonance circuit”, pp. 47–48, Proc. 40th International Conference ICSPETO, Ustroń, 2017.
  • [32] Ł. Majka, “Fractional derivative approach in modeling of a nonlinear coil for ferroresonance analyses”, in Non-integer order calculus and its applications, pp. 135-147, eds. P. Ostalczyk, D. Sankowski, J. Nowakowski, 9th International Conference on Non-integer Order Calculus and its Applications, Łódź, Poland, Springer International Publishing, Cham, 2019.
  • [33] I. Schafer and K. Kruger, “Modelling of lossy coils using fractional derivatives”, J. Phys. D: Appl. Phys. 41, 2008, DOI: 10.1088/0022-3727/41/4/045001.
  • [34] T. Kaczorek, “Minimum energy control of fractional positive continuous-time linear systems using Caputo-Fabrizio definition”, Bull. Pol. Ac.: Tech. 65(1), 45–51 (2017).
  • [35] W. Mitkowski and P. Skruch, “Fractional-order models of the supercapacitors in the form of RC ladder networks”, Bull. Pol. Ac.: Tech. 61(3), 580–587 (2013).
  • [36] D. Spałek, “Synchronous Generator Model with Fractional Order Voltage Regulator PIbDa”, Acta Energetica 23(2), 78–84 (2015), DOI: 10.12736/issn.2300-3022.2015208.
  • [37] S. Kukla and U. Siedlecka, “An analytical solution to the problem of time-fractional heat conduction in a composite sphere”, Bull. Pol. Ac.: Tech. 65(2), 179–186 (2017).
  • [38] W. Sumelka, “Fractional calculus for continuum mechanics - anisotropic non-locality”, Bull. Pol. Ac.: Tech. 64(2), 361–372 (2016).
  • [39] M. Caputo, “Linear models of dissipation whose Q is almost frequency independent-II”, Geophysical Journal of the Royal Astronomical Society 13(5), 529–539 (1967).
  • [40] http://www.kared.com.pl/Products/11/48/Cyfrowy-rejestratorzaklocen-RZ-1.html
  • [41] https://www.mathworks.com/help/matlab/
  • [42] M.J.D. Powell, “A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations”, Numerical Methods for Nonlinear Algebraic Equations, Ch.7, 1970.
  • [43] M. Sowa, “A subinterval-based method for circuits with fractional order elements”, Bull. Pol. Ac.: Tech. 62(3), 449–454 (2014).
  • [44] M. Sowa, “Application of SubIval in solving initial value problems with fractional derivatives”, Applied Mathematics and Computation, 2017, DOI: 10.1016/j.amc.2017.01.047.
  • [45] M. Sowa, “Application of SubIval, a method for fractionalorder derivative computations in IVPs”, in Theory and applications of non-integer order systems, pp. 489–499, eds. A. Babiarz, A. Czornik, J. Klamka and M. Niezabitowski, 8th Conference on Non-integer Order Calculus and Its Applications, Zakopane, Poland, Springer International Publishing, Berlin, 2017.
  • [46] http://msowascience.com/
  • [47] D. Sierociuk, G. Sarwas, and M. Twardy, “Resonance phenomena in circuits with ultracapacitors”, IEEE Environment and Electrical Engineering (EEEIC), pp. 197–202, 12th International Conference on, Wroclaw, Poland, 2013, DOI: 10.1109/EEEIC.2013.6549616.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b61ef345-f4ea-4bb5-b545-0f1cf164ff42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.