Jan Dtugosz University in Czestochowa

Scientific Issues, Mathematics XIV, Czestochowa 2009

MODEL CHECKING OF JAVA PROGRAMS
USING NETWORKS OF FADDS

Bozena Wozna, Andrzej Zbrzezny

Institute of Mathematics and Computer Science
Jan Diugosz University in Czestochowa
al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
e-mail: {b.wozna, a.zbrzezny }Qajd.czest.pl

Abstract

In the paper we present the current theoretical base of the J2FADD tool, which trans-
lates a Java program to a network of finite automata with discrite data (FADDs).
The reason for building the tool is that to model check a concurrent program writ-
ten in Java by means of the tools like Uppaal or VerICS (the module VerICS), an
automata model of the Java program must be build first. This is because these
tools verify only systems modeled as networks of automata, in particular, systems
modeled as networks of FADDs. We also make an attempt to evaluate the J2FADD
tool by comparison of it with the two well known Java verification tools: Bandera
and Java PathFinder.

1. Introduction

Developing and writing multi-threaded programs in Java, one of the modern
programming languages, is not an easy task. But even more hard it is to de-
tect errors due to multi-threading. This is because subtle program errors can
result from unforeseen interactions among multiple threads and they often
depend on the non-deterministic behaviour of the scheduler and the envi-
ronment. Therefore, it is desirable to provide tools for software developers
that automatically detect errors due to multi-threading.

In the last decade various Java verification approaches and tools have
been developed. In particular, the following environment for Java verification
and testing have been built: Java PathFinder (JPF) [11] and Bandera [5].

152 Bozena Wozna, Andrzej Zbrzezny

Both tools can model check Java programs on deadlocks and limited Java
assertions only, and they analyse the Java bytecode.

Other works related to the model checking of Java programs in-
clude [7, 10]. In the paper [10] a SAL (Symbolic Analysis Laboratory, [2]
based Java model checker is presented. The tool uses both the SAL interme-
diate language and the Soot compiler framework, and it works as follows.
First, a Java program is compiled to the Java bytecode. Then, the resulting
bytecode is converted to a Jimple code, one of the Soot output formalisms.
Next, the Jimple code is translated to SAL; this should be done by a Jimple
to SAL translator, but it is not available on the web. Thus, it is not possible
to run and evaluate the [10] Java model checker. Moreover, it seems that
the work is not continued since the year 2000.

In the paper [7] a tool Java Formal Analysis (JavaFAN) is presented. The
tool is based on rewriting logic, implemented in the Maude language, and it
supposes to formally analyse multi-threaded Java programs at source code
and/or bytecode levels. According to [7] the JavaFAN allows for the follow-
ing types of analysis: symbolic simulation, safety violations (via BFS
search), and LTL model checking of rewriting theories. Similarly to
the SAL based model checker, JavaFAN is not available on the web. More-
over, it seems that the work is not continued since the year 2006.

The model checking tools like Uppaal [3] and VerICS [1] accept a de-
scription of a network of finite automata with discrete data (FADDs)
as input. Thus, to verify a concurrent system written in Java by means of
these tools, first a FADD model of the system must be build, which is accu-
rate enough to detect concurrency errors and yet abstract enough to make
model checking tractable.

A year ago we have started developing the J2FADD tool that translates
a Java program to a network of FADDs. At the very beginning this translator
was an implementation of a FADD model of Java programs that was pro-
posed in [16]. Currently, J2FADD implements the solution presented in [16]
with some major corrections in the translation of the notify() method
plus lots of new futures that will be described in Section 3. Other words,
the paper presents the new theoretical base of the J2FADD tool.

Our case study have been done for a Java program that implement
the well-known problem of dining philosophers; as verification engines
we have used Uppaal and the BMC module of VerICS [6] that has been
adapted to work with the J2FADD translator. The module implements the
Bounded Model Checking method with properties expressible in ECTL [12]
and system described as a network of FADDs. We compare our results with
the other available Java verification tools, i.e. JPF and Bandera.

Model Checking of Java programs 153

The rest of the paper is organised as follows. In the next section we
describe the FADD formalism, and we briefly discuss an architecture of
J2FADD - a translator of a Java code to a network of FADDs. In section 3 we
show the theoretical base of our J2FADD tool. Finally, we discuss the dining
philosophers problem.

2. Preliminaries
2.1. Finite automata with discrete data

The model-checkers Uppaal and VerICS are based on the theory of finite
automata [9] and their automata modelling language offers an additional fea-
ture: bounded integer variables; Uppaal and VerICS do in-fact accept timed
automata with discrete data as its input. The properties to be checked are
specified in a subset of CTL (computation tree logic) [4]. In this section
we briefly describe finite automata with discrete data (FADD), the
automata modelling languages of these tools.

A FADD is a finite-state machine extended with bounded discrete vari-
ables. It uses a discrete-time model where a discrete variable evaluates to
an integer value. All the discrete variables are used as in programming lan-
guages: they are read, written, and are subject to common arithmetic op-
erations. In both Uppaal and VerICS, a system is modelled as a network
of several FADDs that run in parallel and communicate via shared actions.
A state of the system is defined by the locations of all automata and the
values of the discrete variables. Every automaton may fire an edge (transi-
tion) separately or synchronise with another automaton, which leads to a
new state.

Automata for Uppaal generated by the J2FADD tool use two kinds of
synchronisation: binary and broadcast. In the binary synchronisation one
sender c! synchronises with non-deterministically chosen receivers c?. If there
are no receivers, then the sender cannot execute the c! action. In the broad-
cast synchronisation one sender ¢! can synchronise with an arbitrary number
of receivers c¢?. Any receiver than can synchronise in the current state must
do so. If there are no receivers, then the sender can still execute the ¢! action,
i.e. broadcast sending is never blocking. Automata for VerICS generated by
the J2FADD tool use the multi-way synchronisation model, i.e. it requires
that each automaton of a given network that contains a transition labelled
by a joint action has to execute it.

154 Bozena Wozna, Andrzej Zbrzezny

2.2. The J2FADD tool

The J2FADD tool implements the translation of a Java program to a
network of FADDs according to the theory discussed in the next section.
J2FADD is written in JAVA and it can be run as a standalone command line
tool on any platform supporting Java 1.5 or later, and can be downloaded
from [1]. J2FADD accepts a number of options to specify the output format
and valuation; all of them can be seen by running the h (from help) option.

To implement the above mentioned translation, first a Java code is trans-
lated to an internal assembler. This step involves lexical analysis and pars-
ing of the input, semantic check and static analysis. Once the assembler
code is generated, two stages remain to convert the assembler to FADDs:
interpreting and generating transitions. The role of the interpreter is
to initialise variables, load needed classes, create objects and threads. For
the detailed description of the internal assembler and translation from the
assembler to a network of FADDs see [13, 14].

3. A FADD model of Java programs

This section describes a translation of a concurrent multi-threaded Java
program into a network of FADDs, which has been implemented as a J2FADD
tool. Each location of the generated FADDs is used to record the current
control state of each thread and the values of key program variables and
any run-time information necessary to implement the concurrent semantics
(e.g., whether each thread is ready, running or blocked on some object, or
dead). Each transition (or a set of transitions) represents the execution of
a Java instruction for some thread. There is one FADD for each instance
of a started thread and one FADD for each shared object. In this paper we
assume all method calls have been inlined, and because the translator does
not detect a statically bounded recursion, direct or indirect recursion is not
allowed.

The subset of Java that can be translated to FADDs and has been de-
scribed in [16] contains: definitions of integer variables, standard program-
ming language constructs like assignments, expressions with most opera-
tors, conditional statements and loops (for, while, do while), definitions
of classes, objects, constructors and methods, static and non—static meth-
ods, and synchronisation methods and blocks. There were also standard
thread creation constructs recognised and special methods: Thread.wait (),
Thread.notify (), and Random.nextInt (int). The currently handled sub-
set of Java contains additionally: instructions break and continue with-
out labels, the methods Thread. join(Thread) and Thread.notifyAl1(Q),

Model Checking of Java programs 155

nested synchronised methods and blocks (this involves a new translation for
the wait () and notify () methods), static objects and comment tags (an-
notations); in the sequel we present FADD models of the new elements of
the chosen subset of Java.

Threads. In Java there are two ways of creating threads: implementing an
interface Runnable or extending the class Thread. Our translation handles
both methods.

We produce one FADD for each instance of a started thread. Namely,
when a thread is started by calling its start () method, one FADD that is
the translation of the body of the run method is produced.

Synchronized methods and blocks. Java supports mutually exclusive
access to objects via synchronized methods and synchronized blocks,
that is, if a thread calls a synchronized method on an object, then no other
thread can call synchronized methods on the same object as long as the
first thread has not terminated its call or has not suspended its execution.
Other words, when a thread executes a synchronized method, it must acquire
the lock of the object (every Java object has an implicit lock) on which the
method has been invoked before executing the body of the method. The lock
is released, when the body of the method is exited. If the lock is unavailable,
the thread will be blocked until the lock is released.

In the FADD formalism mutual exclusion between threads is realised
as follows. Assuming that N is a number of objects on which synchro-
nized methods are invoked, we introduce N binary semaphores as shown
in Figure 1 and N special variables locVary,... ,locVary, one per each
semaphore, initialised with the value zero; the locV ar; variable is a counter
that keeps track of the number of threads blocked on object ¢ due to a call
of a wait () method. Then, we build a two state automaton with two spe-
cial transitions that are labelled with synchronized actions in,_, and out; .,
respectively, where denotes the name of a thread that has invoked a given
synchronized method on the object i, in denotes acquiring a lock of the
object i and the entrance to the method, and out denotes releasing the lock
and exit from the method.

Wait-notify mechanism. In addition to synchronized blocks and meth-
ods, the Java standard library provides the methods wait (), notify() and
notifyAl11() defined in class Object. Rather than continuously test if the
state of an object has changed (i.e. if the lock of an object is released),
a thread can suspend itself by calling the wait() method, until another
thread awakens it by calling the notify() or notifyAl1() method. This
wait-notify technique is a communication mechanism between threads.

156 Bozena Wozna, Andrzej Zbrzezny

out; ,

ocVar; .= locVar; +1
wayt;_q

Figure 1: An automata model of binary semaphore for the i-th shared ob-
ject. In the semaphore we have as many transitions labelled with the action
in (out) as there are threads that call synchronized methods on object i.
Transitions with labels active and wait are added to the semaphore, if a
synchronised method called on object ¢ contains the method wait (). When
action wait is performed, a value of the locVar; is increased by one. Index
x denotes the name of a calling thread.

Let us assume that m is a number of threads waiting on the lock of
object i¢. The method notify() called by thread j, which wakes up an
arbitrary chosen thread from all the threads waiting on the lock of object 1,
is modelled by an automaton that consists of two locations, one transition
with a local action none; ; and m — 1 transitions labelled by synchronized
actions notify; jx), where k € {1,...,j — 1,5+ 1,... ,m}. If there are no
waiting threads, the notify() method has no effect and this is modelled
by the local action none;_; that is enabled only if locVar; = 0. The action
notify; k) can be performed only if locVar; > 0 and it represents the fact
that thread j notifies thread k that waits on object ¢, which thereby is moved
to the ready state. With this action an instruction locVar; := locVar; — 1
is also associated. It means that after performing the action, the number of
the waiting threads is decreased by one. Note that if there is at least one
thread blocked due to a call of a wait () method on object 7, then the value
of the locV ar; counter is greater than zero. Thus, since the transition with
action none;_j is labelled with the guard locVar; = 0, all the transitions
labelled with action notify; ;) can be performed with the guard true.

The method notifyAll() called by thread j, which wakes up all
the threads waiting on the lock of object i, is modelled by an automaton
that consists of two locations and one transition labelled by the broadcast
synchronized action notify; j). The action is performed only if locVar; > 0.
With this action an instruction locVar; := 0 is performed, which means
that after execution the action, there is no waiting threads on the lock of
object 1.

The method wait () called by thread k, which suspends the thread, is
modelled by an automaton that consists of four locations (called in, wait,

Model Checking of Java programs 157

ready, out) and 2(m — 1)+ 2 transitions (m is the number of threads waiting
on the lock of object 7). The first transition (in to wait) is labelled by a local
action wait; ; denoting the fact that thread k goes to a waiting state and
opens semaphore i. In this state the thread is waiting to be notified by any
other thread, what is represented either by m — 1 transitions (wait to ready)
labelled with actions notify(; j) or by m — 1 transitions (wait to ready)
labelled with actions notify; j, for j € {1,...k =1,k +1,... ,m}. These
noti fy actions are synchronized actions between threads and use three differ-
ent models of synchronisation. Actions notify; ;) are performed according
to the rules of binary synchronisation (in Uppaal) or multi-way model of
synchronisation (in VerICS). Actions notify(; ;) are performed according to
the rules of the broadcast synchronisation. Once one of these action hap-
pens, the thread gets into the ready state. A thread in this state is ready for
execution, but is not being currently executed. Once a thread in the ready
state gets access to the CPU, it gets moved to the running state. This is
done by invoking a synchronized action active; , which closes semaphore i
(transition ready to out).

The join() method. A thread invokes the join() method on another
thread in order to wait for the other thread to complete its execution. In
the FADD formalism the method join() called by thread j on a thread 7 is
modelled as follows. First, to the last location of the automaton for thread
i, say Iy, a loop transition (I7,l) is added. It is labelled with a synchronized
action join; ;. Then a two state automaton with one transition labelled with
the action join;_j is constructed. It is a part of the automaton for thread j.

3.1. Valuation for FADDs

In order to introduce a valuation into the network of FADDs generated by
J2FADD and formally describe properties of a given Java program, interest-
ing places of the considered Java program have to be marked by a special
comment tags. The tags should be contained within comments, to not in-
terfere with other translators, for example with a Java compiler.

Syntax of comment tags. A comment tag can be put into any type
of comment. The tag is proceeded with @, then by an optional pair of
parentheses containing a zero or more of the tag’s modifiers, and finally
the parentheses are followed by a name of the tag; currently only names
observable, generateHead and generateTail are recognised. Whitespace
is allowed only within the parentheses. The name is terminated by a whites-
pace or the end of the comment.

158 Bozena Wozna, Andrzej Zbrzezny

Comment tags can vary in scope. A tag put before a class contains
all methods of the class within its scope. A tag in a comment before a
method or a block contains the method or the block, respectively, within its
scope. There are also statement-wide tags. Modifiers are a series of comma-
separated strings. There is an exception though - compiler modifiers that
are prefixed with a dot. These modifiers control how a tag is applied within
its scope.

By default, a tag is applied to each operation within the tag’s scope.
But, if there is a modifier of the form .annotation @Annotation, the tag
is applied only to the operations that contain the given annotation. Another
compiler modifier begins with .inline. It controls how the tag is recursively
applied to inlined methods. The modifier .inline infinite means that the
recursion within which the tag should be applied is infinite. A modifier of the
form .inline < n > defines a maximum recursion depth n, (n > 0). For
example, n = 0 means that a respective tag is lost along with the replaced
method call that contains the tag. For n = 1, the tag is propagated from a
replaced method call only to the directly inlined method m, and it does not
propagate to the methods inlined within m. The modifier .inline first
means that the tag should be applied only at the first operation of the inlined
code.

Tags are ignored in the part of code that is only interpreted.

Special annotations. Special annotations listed below can be used to
apply comment tags more selectively.

e @QQIN - It marks the target locations of both the ”in” transition ap-
pearing in the translation of any synchronised method (block) and the
7active” transition appearing in the translation of the method wait ();

e @QQOUT - It marks the target locations of both the "out” transi-
tion appearing in the translation of any synchronised method (block),
and the "wait” transition appearing in the translation of the method
wait();

e QANOTIFY_THREAD - It marks the source location of "notify” tran-
sitions of the translation of the methods wait() and notify();

e @Q@DO_NOTHING - It marks the source location of the transition that
does not notify any thread in the translation of the method notify ().

e QQNOTIFY - It marks all the locations of the translation of the meth-
ods notify();

o QQWAIT - It marks all the locations of the translation of the methods
wait ().

Model Checking of Java programs 159

e QQ@QHEAD - It marks the first location of the translation of a method.
The same can be gained by using a comment tag @generateHead.

e @QQTAIL - It marks the last location of the translation of a method.
The same can be gained by using a comment tag @generateTail

Comment tags and valuation. When valuation of observables (i.e. the
option -vo in our J2FADD tool) is chosen, only locations that have at least
a single accompanying operation that contain the comment tag have the
valuation variables assigned. Example:

@(.inline infinite, .annotation @@WAIT, .annotation
@Q@IN)observable put(packet);

Apply the discussed tag to every operation (o) that is within the flattened
code of the recursively inlined methods that replace the call put(), but only
if (o) contains the annotations QQWAIT and @QQIN. In effect, the tag is
applied only to operations that accompany the transitions ”active” of the
translation of the methods wait ().

4. Example: Dining Philosophers

In this section we consider the well known example of concurrent program-
ming and we model check it by means of the tools: Uppaal, VerICS, JPF
and Bandera. Since, in fact, JPF and Bandera can search for deadlocks only,
for the considered example we search for deadlocks, which can be defined
formally as follows [15]: A set of processes is deadlocked if each process in the
set is waiting for an event that only another process in the set can cause.

4.1. Problem Description

The description of the dining philosophers problem (DPP) we provide below
is based on that in [8]. Consider n (n > 2) philosophers. Each philosopher
has a room in which he engages in his professional activity of thinking. There
is also a common dining room, furnished with a circular table, surrounded
by n chairs, each labelled by the name of the philosopher who is to sit in
it. On the left of each philosopher there is a fork, and in the centre stands
a large bowl of spaghetti, which is constantly replenished. Whenever a philo-
sopher eats he has to use both forks, the one on the left and the other on
the right of his plate. A philosopher is expected to spend most of his time
thinking, but when he feels hungry, he goes to the dining room, sits down
on his own chair, and picks up the fork on his left provided it is not used by

160 Bozena Wozna, Andrzej Zbrzezny

the other philosopher. If the other philosopher uses it, he just has to wait
until the fork is available. Then the philosopher tries pick up the fork on his
right. When a philosopher has finished he puts down both his forks, exits
dining-room and continues thinking.

4.2. Possible solutions

We have implemented a possible solution of the DPP problem that could lead
to a deadlock (see Listing 2). The deadlock can happen, if every philosopher
sits down on his own chair at the same time and picks up his left fork. Then
all forks are locked and none of the philosophers can successfully pick up
his right fork. As a result, every philosopher waits for his right fork that is
currently being locked by his right neighbour, and hence a deadlock occurs.
The results for the deadlock property are in Table 1.

Tools No. Ph sec. MB
J2TADD + BMC4TADD 5 12 217 | 279.2
JPF 4 2.21 3.7
JPF 5 - -
J2TADD -+ Uppaal 60 1.16 41.9
Bandera 60 117.02 3.3

Table 1. Dining Philosophers. Deadlock.

Assume now another solution for DPP (see Listing 3), where there is
a lackey who ensures that at most n — 1 philosophers can be present in
the dining room at the same time. This lackey ensures that no deadlock is
possible (see Table 2 for the results).

Tools No. Ph | sec. MB
J2TADD + Uppaal 5 52.22 | 418.7
J2TADD + Uppaal 6 - -

JPF 4 16.47 3.7

JPF 5 - -

Bandera 2 76.31 4.6
Bandera 3 - -

Table 2. Dining Philosophers. Absence of deadlocks.

All of the experiments have been performed on a computer equipped
with the processor Intel Core 2 Duo (2 GHz), 2 GB main memory and the
operating system Linux.

Model Checking of Java programs 161

public class College3 {
public static void main(String args []) {
Fork fork0 = new Fork(false); Fork forkl = new Fork(false);
Fork fork2 = new Fork(false);
Philosopher p0 = new Philosopher (0, fork0, forkl);
Philosopher pl = new Philosopher (1, forkl, fork2);
Philosopher p2 new Philosopher (2, fork2, fork0);

© 00Uk W

(new Thread (p0)g start (); (new Thread (pl)).start ();

(new Thread (p2)

}

class Fork {

start ();

private boolean unavailable;
public Fork(boolean unavailable) {
this.unavailable = unavailable;

}

public synchronized void acquire () {
while (unavailable) {
try {wait();} catch (InterruptedException e) {}

unavailable = true;

}

public synchronized void release () {
unavailable = false; notify ();

}

class Philosopher implements Runnable {

private int nr;
private Fork left ,

right ;

public Philosopher(int nr, Fork left , Fork right) {
his.left = left; this.right =

this.nr = nr;

public void run()
while (true) {

left .acquire (); right . acquire ();

t

{

right . release (); left .release ()

Figure 2. Java source code of the DP problem (3 Philosophers).

The main class.

)
)

right;

162 Bozena Wozna, Andrzej Zbrzezny

1 public class College3L {

2 public static void main(String args []) {

3 Fork fO = new Fork(false); Fork fl = new Fork(false);

4 Fork f2 = new Fork(false); Lackey s = new Lackey (2);

5 Philosopher p0 = new Philosopher(0,f0,fl,s);

6 Philosopher pl = new Philosopher(1,f1,f2,s);

7 Philosopher p2 = new Philosopher(2,f2,f0,s);

8 (new Thread (p0)).start (); (nmew Thread(pl)).start ();

9 (new Thread (p2)).start ();

10 }

11

12 class Fork {

13 private boolean unavailable;

14 public Fork(boolean unavailable) {

15 this.unavailable = unavailable;

16 }

17 public synchronized void acquire () {

18 while (unavailable) {try {wait();} catch (Exception e){}}
19 unavailable = true;

20

21 public synchronized void release () {

22 unavailable = false; notify ();

23 }

24

25 class Lackey {

26 private int m; private int max;

27 public Lackey (int max) {this.max = max;}

28 public synchronized void acquire () {

29 while (m >= max) { try {wait();} catch (Exception e) {}}
30 +Hm;

31 }

32 public synchronized void release () { —m; notify (); }

33

34 class Philosopher implements Runnable {

35 private int nr; private Lackey s;

36 private Fork left , right;

37 public Philosopher(int nr, Fork left , Fork right, Lackey s) {
38 this.nr = nr; this.s = s; this.left = left; this.right = right;
39}

40 public void run() {

41 while (true) {

42 s.acquire (); left.acquire ();

43 //@(.inline infinite , .annotation Q@NOTIFY.THREAD)observable
44 right . acquire (); right.release ();

45 left .release (); s.release ();

46 }

47 }

48 }

Figure 3. Java source code of the DP problem (3 Philosophers) with lackey.
The main class.

Model Checking of Java programs 163

5. Conclusions

In the paper we have presented a theoretical base of the J2FADD transla-
tor which together with the verification core of Uppaal and VerICS allows
to validate the well-known concurrency example written in Java: dining
philosophers. The translator performs a number of optimisations to de-
crease the often high memory and time requirements of model checking.
The experiments confirm that our approach provides a valuable aid for
Java software verification. Moreover, we have compared our results with JPF
and Bandera, and it turned out that our tool works much more efficient.

References

1]
2]
[3]

http://www.ajd.czest.pl/~modelchecking
Symbolic Analysis Laboratory (SAL). http://sal.csl.sri.com/ (2008).

J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, W. Yi, C. Weise.
New generation of UPPAAL. In: Proc. Int. Workshop on Software Tools
for Technology Transfer, T. Margaria, B. Steffen (Eds.), pp. 43-51,
1998.

E.M. Clarke, O. Grumberg, D.A. Peled. Model Checking, The MIT
Press, Cambridge, Massachusetts, 1999.

J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu,
Robby, H. Zheng. Bandera: Extracting finite-state models from Java

source code. In: Proc. 22nd Int. Conf. on Software Engineering
(ICSE ’00), ACM Press, New York, pp. 439-448, 2000.

P. Dembinski, A. Janowska, P. Janowski, W. Penczek, A. Pélrola,
M. Szreter, B. Wozna, A. Zbrzezny. Verics: A tool for verifying
timed automata and Estelle specifications. In: Proc. 9th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’03), H. Garavel, J. Hatcliff (Eds.), Lecture Notes in
Computer Sience, vol. 2619, pp. 278-283, Springer, Berlin 2003.

A. Farzan, F. Chen, J. Meseguer, G. Rosu. Formal analysis of Java
programs in JavaFAN. In: Proc. 16th Int. Conf. on Computer-aided
Verification (CAV’04), R. Alur, D.A. Peled (Eds.), Lecture Notes in
Computer Sience, vol. 3114, pp. 501-505, Springer, Berlin 2004.

164

Bozena Wozna, Andrzej Zbrzezny

8]

[12]

C.A.R. Hoare. Communicating Sequential Processes, Prentice Hall,
London 1985.

J. E. Hopcroft, J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, Reading, Mas-
sachusetts 1979.

D. Park, U. Stern, J.U. Skakkebaek, D.L. Dill. Java model checking.
In: Proc. 15th IEEE Int. Conf. on Automated Software Engineering
(ASE’2000), pp. 253-256, IEEE, 2000.

C. Pasareanu, W. Visser. Verification of Java programs using sym-
bolic execution and invariant generation. In: Model Checking Software,
Proc. SPIN’04, S. Graf, L. Mounier (Eds.), Lecture Notes in Computer
Sience, vol. 2989, pp. 164-181, Springer, Berlin 2004.

W. Penczek, B. Wozna, A. Zbrzezny. Bounded model checking for the
universal fragment of CTL, Fundamenta Informaticae, 51, 135-156,
2002.

A. Rataj, B. Wozna, A. Zbrzezny. A translator of Java programs to
TADDs. In: Proc. Int. Workshop on Concurrency, Specification and
Programming (CSEP’08), pp. 524-535, 2008.

A. Rataj, B. Wozna, A. Zbrzezny. A translator of Java programs to
TADDs. Fundamenta Informaticae, 95, 305-324, 2009.

A.S. Tanenbaum. Modern Operating Systems, Prentice Hall, Amster-
dam 2001.

A. Zbrzezny, B. Wozna. Towards verification of Java programs in Ver-
ICS. Fundamenta Informaticae, 85, 533-548, 2008.

