Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In order to study the hydroforming simulation process of variable cross-section shaped tubular automobile longitudinal arm and the influence law of key factors on its forming quality, and to provide guidance for its engineering application. Firstly, the numerical simulation and experimental analysis of hydroforming are carried out on variable diameter tube with similar characteristics to the longitudinal arm hydroforming, and the correctness of the built finite element model and numerical simulation method is verified through experiments. Then, according to the structural characteristics of the automobile longitudinal arm parts, determine the longitudinal arm hydroforming process and the main molding parameters, and analyze the molding process by numerical simulation. According to the simulation results, the effects of hydroforming initial internal pressure, initial feeding, friction coefficient and shaping pressure on the wall thickness characteristics and shaping rules of the longitudinal arm are investigated, and the hydraulic expansion test of automobile longitudinal arm is carried out on the basis of the optimal loading path obtained. The results show that: in the case that the initial internal pressure does not reach the cracking pressure, the initial internal pressure and initial axial feeding has a greater impact on the wall thickness of the automobile longitudinal arm, reduce the friction coefficient can improve the material flow performance, improve the uniformity of the wall thickness of the parts, and appropriately increase the shaping pressure can improve the dimensional accuracy of the longitudinal arm molding and the molding quality. It is verified by experimental comparison that the whole process of automobile longitudinal arm forming simulation based on bending-hydraulic forming has high feasibility, and a relatively good loading path can be obtained to provide reference for practical engineering applications.
Czasopismo
Rocznik
Tom
Strony
art. no. e3, 2025
Opis fizyczny
Bibliogr. 22 poz., fot., rys., tab., wykr.
Twórcy
autor
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, China
autor
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, China
autor
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, China
autor
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, China
autor
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, China
autor
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, China
Bibliografia
- 1. Raut SV, Ramesh A, Arun A, Sumesh CS. Finite element analysis and optimization of tube hydroforming process. Mater Today Proc. 2021;46:5008–16. https://doi.org/10.1016/j.matpr.2020.10.394.
- 2. Hwang YM, Zhang CH, Chen CC, Yoshihara S. Feeding path and movable die design in tube hydroforming of metal bellows. Int JAdv Manuf Technol. 2023;129:2399–414. https://doi.org/10.1007/s00170-023-12492-w.
- 3. Kong TF, Lu XZ, Chan LC. Analysis and reduction of wrinkling defects for tube-hydroforming magnesium alloy components at elevated temperatures. Mater Des. 2019;173: 107761. https://doi.org/10.1016/j.matdes.2019.107761.
- 4. Marlapalle BG, Hingole RS. Predictions of formability parameters in tube hydroforming process. SN Appl Sci. 2021;3(6):606.
- 5. Kaya S. Evaluating porthole and seamless aluminum tubes and lubricants for hydroforming. Int J Adv Manuf Technol.2015;77:807–17.
- 6. Han C, Feng H. Circum ferential material flow in the hydroforming of overlapping blanks. Metals. 2020;10(7):864. https://doi.org/10.3390/met10070864.
- 7. Reddy BV, Kondayya D, Goud EV, Reddy PV. Yield criterion influence on the formability prediction of SS 304 by tensile tests and bulge tests during tube hydroforming process. Mul-tiscale and Multidisciplinary Modeling. Experiments Design.2021;4(4):293–302.
- 8. Chen G, Chu GN, Liu P, Sun L. Study on the mechanism of wrinkle flattening under internal pressure and the critical condition of dead wrinkle. J Manuf Process. 2022;76:740–51. https://doi.org/10.1016/j.jmapro.2022.02.056.
- 9. Goutham T K, Takalkar A S, Karthick C K, Chalam S B, Krishna S. (2015) Design and simulation of hydroforming of a tubular component using LS-Dyna Simulation. Indian Conference on Applied Mechanics. 13–15.
- 10. Huang Y, Li J, Yang J, Peng Y, Zhang W. Simulation analysis of torsion beam hydroforming dased on the Fluid-Solid coupling method. Chin J Mech Eng. 2023;36(1):3. https://doi.org/10.1186/s10033-022-00819-9.
- 11. Hwang YM, Chen YC. Study of compound hydroforming of pro-filed tubes. Procedia Eng. 2017;207:2328–33.
- 12. Zhou Y, Li P, Li M, Wang L, Sun S. Residual stress and spring-back analysis for 304 stainless steel tubes in flexible-bending process. Int J Adv Manuf Technol. 2018;94:1317–25. https://doi.org/10.1007/s00170-017-0993-7.
- 13. Liu Z, Wang H, Wang L, Ma F, Tao J, Xu J, Guo X. Multi-step forming simulation and experiment of swing arms for torsion beam. Int J Adv Manuf Technol. 2016;85:405–14. https:// doi.org/10.1007/s00170-015-7899-z.
- 14. Jirathearanat S. Advanced methods for finite element simulation for part and process design in tube hydroforming. The Ohio State University.2004.
- 15. Fischer FD, Rammerstorfer FG, Daxne T. Flaring—An analytical approach. Int J Mech Sci. 2006;48(11):1246–55. https://doi.org/10.1016/j.ijmecsci.2006.06.004.
- 16. Wen G, Wen X, Cao H, Bai P, Meng Y, Ma L, Tian Y, et al. Fabrication of Ti3C2 MXene and tetradecylphosphonic acid@ MXene and their excellent friction-reduction and anti-wear performanceas lubricant additives. Tribol Int. 2023;186:108590.
- 17. Holmberg K, Laukkanen A, Hakala T, Ronkainen H, Suhonen T, Wolsk M, Li L. Topography orientation effects on friction and wear in sliding DLC and steel contacts, part 3: Experiments underdry and lubricated conditions. Wear. 2021;486: 204093. https://doi.org/10.1016/j.wear.2021.204093.
- 18. Zavieh AH, Espallargas N. The effect of friction modifiers on tribocorrosion and tribocorrosion-fatigue of austenitic stainless steel. Tribol Int. 2017;111:138–47. https://doi.org/10.1016/j.triboint.2017.03.008.
- 19. Kou B, Li Z, Zhang Z, Li R. Friction and wear properties of hydraulic components with ceramic/steel-to-steel pairs. J Mech Sci Technol. 2021;35(8):3375–88. https:// doi. org/ 10. 1007/s12206-021-0711-0.
- 20. Vafaei S, Jopen M, Jacobs G, König F, Weberskirch R. Synthesis and tribological behavior of bio-based lubrication greases with bio-based polyester thickener systems. J Clean Prod. 2022;364:132659.
- 21. Mazur VL, Timoshenko VI. Lubricant action of emulsions in rolling: theory and practice. Steel in translation. 2017;47(7):483–90.https://doi.org/10.3103/S0967091217070075.
- 22. Yu HX, Yu X, Chen S, Hao J, Xu L. A monosurfactant-stabilizeddual-responsive and versatile emulsion lubricant. J Clean Prod.2023;406: 137089. https://doi.org/10.1016/j.jclepro.2023.137089.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b60d5ac2-869e-4df6-a90e-b8658e4a3113
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.