PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of natural organic matter on adsorption of ionic and non-ionic pharmaceuticals to granular activated carbon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adsorption of clofibric acid (CA) and propyphenazone (PPZ) to virgin granular activated carbon (GAC) and preloaded GAC was evaluated in the absence or presence of natural organic matter (NOM). In spite of lower log K ow, PPZ showed higher selectivity to GAC than CA, which has a carboxylic group. Adsorption competition between CA and PPZ in binary solutes system decreased the amount of individual compound adsorbed to GAC. Adsorption isotherm data obtained in the presence of NOM showed that NOM in bulk solution or preloaded on GAC could significantly reduce the amounts of CA and PPZ adsorbed to GAC.
Rocznik
Strony
15--28
Opis fizyczny
Bibliogr. 27 poz., tab., rys.
Twórcy
autor
  • Environment and Energy Research Team, Daewoo E&C, Suwon, 440-210, Korea
autor
  • School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan
autor
  • Department of Environmental Health, National Institute of Public Health, Saitama 351-0197, Japan
autor
  • Department of Environmental Engineering, University of Seoul, Seoul 130-743, Korea
Bibliografia
  • [1] FOCAZIO M.J., KOLPIN D.W., FURLONG E., Occurrence of human pharmaceuticals in water resources of the United States: a review, [in:] K. Kümmerer (Ed.), Pharmaceuticals in the Environment, 2nd Ed. Springer, Berlin 2004, 91–105.
  • [2] METCALFE C., MIAO X.-S., HUA W., LETCHER R., SERVOS M., Pharmaceuticals in the Canadian Environment, [in:] K. Kümmerer (Ed.), Pharmaceuticals in the Environment, 2nd Ed., Springer, Berlin 2004, 67–90.
  • [3] ZWIENER C., FRIMMEL F.H., Short-term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen, and diclofenac, Sci. Total Environ., 2003, 309 (1), 201.
  • [4] TERNES T.A., Occurrence of drugs in German sewage treatment plants and rivers, Water Res., 1998, 32 (11), 3245.
  • [5] HUBER M.M., CANONICA S., PARK G.Y., VON GUNTEN U., Oxidation of pharmaceuticals during ozonation and advanced oxidation processes, Environ. Sci. Technol., 2003, 37, 1016.
  • [6] PINKSTON K.E., SEDLAK D.L., Transformation of aromatic ether- and amine-containing pharmaceuticals during chlorine disinfection, Environ. Sci. Technol., 2004, 38, 4019.
  • [7] NGHIEM L.D., SCHÄFER A.I., ELIMELECH M., Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms, Environ. Sci. Technol., 2005, 39, 7698.
  • [8] URASE T., SATO K., The effect of deterioration of nanofiltration membrane on retention of pharmaceuticals, Desalination, 2007, 303, 385.
  • [9] AL-RIFAI J.H., KHABBAZ H., SCHÄFER A.I., Removal of pharmaceuticals and endocrine disrupting compounds in a water recycling process using reverse osmosis systems, Sep. Purif. Technol, 2011, 77 (1), 60.
  • [10] JAVIER BENITEZ, F., ACERO J.L., REAL F.J., ROLDÁN G., RODRIGUEZ E., Ultrafiltration and nanofiltration membranes applied to the removal of the pharmaceuticals amoxicillin, naproxen, metoprolol and phenacetin from water, J. Chem. Technol. Biotechnol., 2011, 86 (6), 858.
  • [11] STOQUART C., SERVAIS P., BÉRUBÉ P.R., BARBEAU B., Hybrid Membrane Processes using activated carbon treatment for drinking water: A review, J. Membr. Sci., 2012, 411/412, 1.
  • [12] WESTERHOFF P., YOON Y., SNYDER S., WERT E., Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes, Environ. Sci. Technol., 2005, 39, 6649.
  • [13] HU J.Y., AIZAWA T., OOKUBO Y., MORITA T., MAGARA Y., Adsorptive characteristics of ionogenic aromatic pesticides in water on powdered activated carbon, Water Res., 1998, 32 (9), 2593.
  • [14] DELGADO L.F., CHARLES P., GLUCINA K., MORLAY C., The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon: A review, Sci. Total Environ., 2012, 435/436, 509.
  • [15] YU Z., PELDSZUS S., HUCK P.M., Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics, Environ. Sci. Technol., 2009, 43, 1467.
  • [16] OH H.K, KAGAWA C., URASE T., KASUGA I., SIMAZAKI D., KUNIKANE S., Removal of pharmaceuticals through continuous operation of column filled with fresh and aged granular activated carbons, Proc. of 7th International Symposium on Water Supply Technology, Yokohama, Japan, 2006.
  • [17] HIGNITE C., AZAZNOFF D.L., Drugs and drug metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent, Life Science, 1977, 20, 337.
  • [18] URASE T., KIKUTA T., Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process, Water Res., 2005, 39 (7), 1289.
  • [19] PATEL N., BOETHLING B., Overview of EPI SuiteTM: Software for Chemical Property and Fate Estimation, U.S. EPA OPPT, Washington, D.C., 2006.
  • [20] AHEL M., JELICIC I., Phenazone analgesics in soil and groundwater below a municipal solid waste landfill, [in:] C.G. Daughton, T. Jones-Lepp (Eds.), Pharmaceuticals and Personal Care Products in the Environment: Scientific and Regulatory Issues, American Chemical Society, Washington D.C., 2001, 100–115.
  • [21] GECOL H., ERGICAN E., MIAKATSINDILA P., Biosorbent for tungsten species removal from water: effects of co-occurring inorganic species, Colloid Interface Sci., 2005, 292 (2), 344.
  • [22] AN B.R., STEINWINDER T.R., ZHAO D., Selective removal of arsenate from drinking water using a polymeric ligand exchanger, Water Res., 2005, 39, 4993.
  • [23] FUKUHARA T., IWASAKI S., KAWASHIMA M., SHINOHARA O., Adsorbability of estrone and 17β-estradiol in water onto activated carbon, Water Res., 2006, 40, 241.
  • [24] TERNES T.A. MEISENHEIMER M., MCDOWELL D., SACHER F., BRAUCH H.J., HAIST-GULDE B., PREUSS G., WILME U., ZULEI-SEIBERT N., Removal of pharmaceuticals during drinking water treatment, Environ. Sci. Technol., 2002, 36, 3855.
  • [25] NEWCOMBE G., MORRISON J., HEPPLEWHITE C., KNAPPE D.R.U., Simultaneous adsorption of MIB and NOM onto activated carbon. II. Competitive effects, Carbon, 2002, 40 (12), 2147.
  • [26] CHI F.H, AMY G.L, Kinetic study on the sorption of dissolved natural organic matter onto different aquifer materials: the effects of hydrophobicity and functional groups, J. Colloid Interface Sci., 2004, 274, 380.
  • [27] CHIN Y.P., AIKEN G., O’LOUGHLIN E., Molecular Weight, Polydispersity, and Spectroscopic Properties of Aquatic Humic Substances, Environ. Sci. Technol., 1994, 28 (11), 1853.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b609d3c9-91ee-498f-bd30-1104288b354c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.