PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural changes of expansive clays during dehydration caused by suction pressure - a case study of Miocene to Pliocene clays from Warsaw (Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the qualitative and quantitative characteristics of microstructures of Neogene clays from Warsaw, Poland. Scanning Electron Microscope (SEM) studies were used for the microstructural analysis of natural clays and clay pastes. Qualitative microstructural changes were observed: from a honeycomb microstructure for the initial clay paste to a turbulent microstructure for the dried paste. It was also noticed that water loss caused by the increase of the suction pressure had a significant impact on the microstructural transformations. Significant changes in the quantitative values of the pore space parameters were also observed. Increase of suction pressure and water loss caused a decrease in porosity and changes in the values of morphometric parameters, such as pore distribution; for example, a significant increase of the number of pores of 0−10 μm size and changes in the geometric parameters of the pore space were noticed with the increase of suction pressure. The pore space with larger isometric pores was modified into a pore space with the dominance of small anisometric and fissure-like pores. The increased degree of anisotropy from a poorly-oriented to a highly-oriented microstructure was also observed. After rapid shrinkage the reduction in the number of pores, maximum pore diameter, and total pore perimeter was recorded. The process of rapid water loss induced the closure of very small pores. A similar effect was observed during the increase of the suction pressure, where the closure of pore space of the clay pastes was observed very clearly.
Rocznik
Strony
465--488
Opis fizyczny
Bibliogr. 91 poz., rys., tab., wykr.
Twórcy
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
  • Wroclaw Research Centre EIT+, Stabłowicka 147, PL-54-066 Wrocław, Poland
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
Bibliografia
  • 1. Agus, S.S. and Schanz, T. 2005. Effect of shrinking and swelling on microstructures and fabric of a compacted bentonitesand mixture. In: Bilsel, H. and Nalbantoglu, Z. (Eds), Proceedings of International Conference on Problematic Soils GEOPROB, vol. 2, pp. 543-550. Eastern Mediterranean University Press; Famagusta.
  • 2. Aylmore, L.A.G. and Quirk, J.P. 1960. Domain or turbostatic structure of clays. Nature, 187, 1046-1048.
  • 3. ASTM D 2487-06. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). American Society for Testing and Materials; Philadelphia.
  • 4. Bajda, M. 2002. Application of static-seismic soundings in the assessment of mechanical parameters of soil, 110 p. Unpublished Ph.D. thesis, Warsaw University of Life Sciences; Warsaw. [In Polish]
  • 5. Barański, M. and Wójcik, E. 2007. Assessment of the ability to deformation changes of Miocene and Pliocene clays from the study area. Geologos, 11, 413-420. [In Polish]
  • 6. Barański, M. and Wójcik, E. 2008. Estimation of ability to volume changes of Mio-Pliocene Clay from Warsaw. Geologija, 50 (Supplement), S49-S54.
  • 7. Barański, M., Kaczyński, R., Borowczyk, M., Kraużlis, K., Trzciński, J., Wójcik, E., Granacki, W., Szczepański, T. and Zawrzykraj, P. 2004. Assessment of Pliocene clay behaviour from the Stegny site in effective strain conditions. Projekt badawczy KBN Nr 5 T12B 041 22, 280 p. Archiwum NCN; Warsaw. [In Polish]
  • 8. Barański, M., Kaczyński, R., Borowczyk, M., Wójcik, E., Trzciński, J., Szczepański, T., Gawriuczenkow, I., Mieszkowski R., Kraużlis, K., Zawrzykraj, P., and Granacki, W. 2009. Assessment of structure anisotropy and effective strain in Miocene-Pliocene clays from the Stegny study site in Warsaw. Projekt badawczy KBN Nr 4T12B 030 30, 463 p. Archiwum NCN; Warsaw. [In Polish]
  • 9. Bennet, R.H., Bryant, W.R. and Hulbert, M.H. (Eds) 1991. Microstructure of fine-grained sediments. From mud to shale, 582 p. Springer-Verlag; New York.
  • 10. Brykczyńska, E. and Brykczyński, M. 1974. Geology of the Trasa Łazienkowska excavation in relation to the disturbances of Tertiary and Quaternary sediments in Warsaw. Prace Muzeum Ziemi, 22, 199-216. [In Polish]
  • 11. BS 1377-2:1990:6.5. Methods of test for soils for civil engineering purposes. Part 2: Classification tests.
  • 12. Burland, J.B. 1990. On the compressibility and shear strength of natural clays. Géotechnique, 40, 329-378.
  • 13. Collins, K. and McGown, A. 1974. The form and function of microfabric features in a variety of natural soils. Géotechnique, 24, 223-254.
  • 14. Cuisinier, O. and Laloui, L. 2004. Fabric evolution during hydromechanical loading of a compacted silt. International Journal for Numerical and Analytical Methods in Geomechanics, 28, 483-499.
  • 15. Dananaj, I., Frankovska, J. and Janotka, I. 2005. The influence of smectite content on microstructure and geotechnical properties of calcium and sodium bentonites. Applied Clay Science, 28, 223-232.
  • 16. Delage, P. and Lefebvre, G. 1984. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation. Canadian Geotechnical Journal, 21, 21-35.
  • 17. Dyjor, S. 1992. Development of sedimentation and process of sediment transformation in the Poznań series basin in Poland. Prace Geologiczno-Mineralogiczne, 26, 3-18. [In Polish]
  • 18. Fityus, S. and Buzzi, O. 2009. The place of expansive clays in the framework of unsaturated soil mechanics. Applied Clay Science, 43, 150-155.
  • 19. Frankowski, Z. and Wysokiński, L. 2000. Engineering-geological atlas of Warsaw, 80 p. Archiwum CAG; Warszawa. [In Polish]
  • 20. Gens, A. and Alonso, E.E. 1992. A framework for the behavior of unsaturated expansive clays. Canadian Geotechnical Journal, 29, 1013-1032.
  • 21. Geremew, Z., Audiguier, M. and Cojean, R. 2009. Analysis of the behavior of a natural expansive soil under cyclic drying and wetting. Bulletin of Engineering Geology and the Environment, 3, 421-436.
  • 22. Gillott, J.E. 1970. Fabric of Leda clay investigated by optical, electron-optical, and x-ray diffraction methods. Engineering Geology, 4, 133-153.
  • 23. Gillott, J.E. 1979. Fabric, composition and properties of sensitive soils from Canada, Alaska and Norway. Engineering Geology, 14, 149-172.
  • 24. Gillott, J.E. 1987. Clay in engineering geology, 468 p. Elsevier; Amsterdam, Oxford, New York, Tokyo.
  • 25. Grabowska-Olszewska, B. 1975. SEM analysis of microstructures of loess deposits. Bulletin of Engineering Geology and the Environment, 11, 45-48.
  • 26. Grabowska-Olszewska, B. (Ed.) 1998. Properties of unsaturated soils, 217 p. PWN; Warszawa. [In Polish]
  • 27. Grabowska-Olszewska, B., Osipov, V.I. and Sokolov, V.N. 1984. Atlas of the microstructure of clay soils, 414 p. PWN; Warszawa.
  • 28. Gratchev, I.B., Sassa, K., Osipov, V.I. and Sokolov, V.N. 2006. The liquefaction of clayey soils under cyclic loading. Engineering Geology, 86, 70-84.
  • 29. Hattab, M. and Fleureau, J.M. 2010. Experimental study of kaolin particle orientation mechanism. Getotechnique, 60, 323-331.
  • 30. Hattab, M. and Fleureau, J.M. 2011. Experimental analysis of kaolinite particle orientation during triaxial path. International Journal for Numerical and Analytical Methods in Geomechanics, 35, 947-968.
  • 31. Hattab, M., Bouziri-Adrouche, S. and Fleureau, J.M. 2010. Ѐvolution de la microtexture d’une matrice kaolinitique sur chemin triaxial axisymѐtrique. Canadian Geotechnical Journal, 47, 38-48.
  • 32. Head, K.H. 1992. Manual of Soil Laboratory Testing. Vol. 1: Soil classification and compaction tests, 388 p. Pentech Press; London.
  • 33. Hicher, P.Y., Wahyudi, H. and Tessier, D. 2000. Microstructural analysis of inherent and induced anisotropy in clay. Mechanics of Cohesive-frictional Materials, 5, 341-371.
  • 34. Izdebska-Mucha, D. and Trzciński, J. 2008. Effects of petroleum pollution on clay soil microstructure. Geologija, 50, S68-S74.
  • 35. Izdebska-Mucha, D. and Wójcik, E. 2014. Expansivity of Neogene clays and glacial tills from Central Poland. Geological Quarterly, 58, 281-290.
  • 36. Izdebska-Mucha, D., Trzciński, J., Żbik, M.S. and Frost, R.L. 2011. Influence of hydrocarbon contamination on clay soil microstructure. Clay Minerals, 46, 47-58.
  • 37. Kaczyński, R. 2000. Microstructural parameters of the pore space and some physical properties of selected cohesive soils from Warsaw. Materiały Sesji Jubileuszowej, pp. 143-149. Polish Academy of Sciences, Warsaw. [In Polish]
  • 38. Kaczyński, R. 2001. Permeability, swelling and microstructure of Pliocene clays from Warsaw. In: Adachi, K. and Fukue, M. (Eds), Clay Sciences for Engineering, pp. 281-284. Proceedings of the International Symposium on Suction, Swelling, Permeability and Structure of Clays. Balkema; Shizuoka.
  • 39. Kaczyński, R. 2003. Overconsolidation and microstructures in Neogene clays. Geological Quarterly, 47, 43-54.
  • 40. Kaczyński, R. and Grabowska-Olszewska, B. 1997. Soil mechanics of the potentially expansive clays in Poland. Applied Clay Science, 11, 337-355.
  • 41. Kaczyński, R., Grabowska-Olszewska, B., Borowczyk, M., Rusz czyńska-Szenajch, H., Kraużlis, K., Trzciński, J., Barański, M., Gawriuczenkow, I. and Wójcik, E. 2000. Litho genesis, microstructures and engineering-geological properties of Pliocene clays in the Warsaw region. Projekt badawczy KBN Nr 9T12B 005 16, 127 p. Archiwum NCN; Warsaw. [In Polish]
  • 42. Katti, D.R. and Shanmugasundaram, V. 2001. Influence of swelling on the microstructure of expansive clays. Canadian Geotechnical Journal, 38, 175-182.
  • 43. Koliji, A., Laloui, L., Cuisinier, O. and Vulliet, L. 2006. Suction induced effects on the fabric of a structured soil. Transport in Porous Media, 64, 261-278.
  • 44. Kulesza-Wiewióra, K. 1990. Preparation of smaples for mineralogical and physical-chemical analyses. In: Grabowska-Olszewska, B. (Ed.), Metody badań gruntów spoistych, pp. 130-141. Wydawnictwa Geologiczne; Warszawa. [In Polish]
  • 45. Kumor, M.K. 2008. Selected geotechnical problems of expansive clays in the area of Poland. Architecture Civil Engineering Environment, 1, 75-92.
  • 46. Kumor, M.K. 2016. Expansive clays in the construction basement from Bydgoszcz. Selected geotechnical problems, 235 p. Wydawnictwo UTP; Bydgoszcz. [In Polish]
  • 47. Lech, M. and Bajda, M. 2004. Identification of geological barriers at the Stegny site. 16th European Young Geotechnical Engineers Conference, pp. 201-210. Austrian Society for Engineers and Architects; Vienna.
  • 48. Lloret, A., Romero, E. and Villar. M.V. 2004. FEBEX II Project. Final report on thermo-hydro-mechanical laboratory tests. Ref. PT-10/04. ENRESA, Dirección de Ciencia y Tecnología; Madrid.
  • 49. McGown, A. and Collins, K. 1975. The microfabrics of some expansive and collapsing soils. Proceedins of 5th Panamerican Conference, Vol. 1, pp. 323-332. Soil Mechanics and Foundation; Buenos Aires.
  • 50. Mitchell, J.K. 1976. Fundamentals of soil behavior, 422 p. John Wiley and Sons; New York.
  • 51. Murphy, C.P., Bullock, P. and Biswell, K.J. 1977. The measurement and characterization of voids in soil thin sections by image analysis. Part II applications. Journal of Soil Science, 28, 509-518.
  • 52. Osipov, V.I. 1975. Structural Bonds and the Properties of Clays. Bulletin of Engineering Geology and the Environment, 12, 13-20.
  • 53. Osipov, V.I., and Sokolov, V.N. 1978a. A study of the nature of the strength and deformation properties of clay soils with the help of the scanning electron microscope. Bulletin of Engineering Geology and the Environment, 17, 91-94.
  • 54. Osipov, V.I. and Sokolov, V.N. 1978b. Relation between the microfabric of clay soils and their origin and degree of compaction. Bulletin of Engineering Geology and the Environment, 18, 73-81.
  • 55. Osipov, V.I. and Sokolov, V.N. 1978c. Structure formation in clay sediments. Bulletin of Engineering Geology and the Environment, 18, 83-90.
  • 56. Osipov, V.I., Nikolaeva, S.K. and Sokolov, V.N. 1984. Microstructural changes associated with thixotropic phenomena in clay soils. Géotechnique, 34, 293-303.
  • 57. Piwocki, M. 2002. Evolution of ideas on the stratigraphy of the Poznań Formation in the Polish Lowlands. Przegląd Geologiczny, 50, 255. [In Polish]
  • 58. PN-86/02480. Building soils. Definitions, symbols, sub-division and description of soils. [In Polish]
  • 59. PN-88/B-04481. Building soils. Analysis of soil samples. [In Polish]
  • 60. Pusch, R. 1966. Quick-clay microstructure. Engineering Geology, 1, 433-443.
  • 61. Pusch, R. 1970. Microstructural changes in soft quick clay at failure. Canadian Geotechnical Journal, 7, 1-7.
  • 62. Romero, E., Gens, A. and Lloret, A. 1999. Water permeability, water retention and microstructure of unsaturated Boom clay. Engineering Geology, 54, 117-127.
  • 63. Romero, E., Hoffmann, C., Castellanos, E., Suriol, J. and Lloret, A. 2005. Microstructural changes of compacted bentonite induced by hydro-mechanical actions. Proceedings of International Symposium on Large Scale Field Tests in Granite, Sitges, Spain, 12-14 November 2003. In: Alonso, E.E. and Ledesma, A. (Eds), Advances in understanding engineered clay barriers, pp. 193-202. Taylor, Francis Group; London.
  • 64. Ruszczyńska-Szenajch, H., Trzciński, J. and Jarosińska, U. 2003. Lodgement till deposition and deformation investigated by macroscopic observation, thin-section analysis and electron microscope study at site Dębe, central Poland. Boreas, 32, 399-415.
  • 65. Schmitz, R.M., Schroeder, C. and Charlier, R. 2005. Influence of microstructure on geotechnical properties of clays. Unsaturated Soils: Experimental Studies, 93, 89-100.
  • 66. Seiphoori, A., Ferrari, A. and Laloui, L. 2014. Water retention behaviour and microstructural evolution of MX-80 granular bentonite during wetting and drying cycles. Géotechnique, 64, 721-734.
  • 67. Sergeyev, Y.M., Grabowska-Olszewska, B., Osipov, V.I. and Sokolov, V.N. 1978. Types of the microstructures of clayey soils. Proceedings of the III International Congress I.A.E.G., 4-8 September, pp. 319-327. International Association of Engineering Geology; Madrid.
  • 68. Sergeyev, Y.M., Grabowska-Olszewska, B., Osipov, V.I., Sokolov, V.N. and Kolomenski, Y.N. 1980. The classification of microstructures of clay soil. Journal of Microscopy, 120, 237-260.
  • 69. Sergeyev, Y.M., Spivak, G.V., Sasov, A.Y., Osipov, V.I., Sokolov, V.N. and Rau, E.I. 1984a. Quantitative morphological analysis in a SEM-microcomputer system - I. Quantitative shape analysis of single objects. Journal of Microscopy, 135, 1-12.
  • 70. Sergeyev, Y.M., Spivak, G.V., Sasov, A.Y., Osipov, V.I., Sokolov, V.N. and Rau, E.I. 1984b. Quantitative morphological analysis in a SEM-microcomputer system - II. Morphological analysis of complex SEM images. Journal of Microscopy, 135, 13-24.
  • 71. Simms, P.H. and Yanful, E.K. 2001. Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil-water characteristic curve tests. Canadian Geotechnical Journal, 38, 741-754.
  • 72. Simms, P.H. and Yanful, E.K. 2002. Predicting soil-water characteristic curves of compacted plastic soils from measured pore-size distributions. Géotechnique, 52, 269-278.
  • 73. Simms, P.H. and Yanful, E.K. 2004. A discussion of the application of mercury intrusion porosimetry for the investigation of soils, including an evaluation of its use to estimate volume change in compacted clayey soils. Géotechnique, 54, 421-426.
  • 74. Simms, P.H. and Yanful, E.K. 2005. A pore-network model for hydromechanical coupling in unsaturated compacted clayey soils. Canadian Geotechnical Journal, 42, 499-514.
  • 75. Smart, P. and Tovey, K. 1982. Electron microscopy of soils and sediments: techniques, 264 p. Clarendom Press; Oxford.
  • 76. Sobolewski, M. 2002. Determination of characteristics of water flow in cohesive soils based on in situ analyses, 85 p. Unpublished Ph.D. thesis. Archiwum SGGW; Warsaw. [In Polish]
  • 77. Sokolov, V.N. 1990. Engineering-geological classification of clay microstructures. Proceedings of the 6th International Congress IAEG, pp. 753-760. Balkema; Rotterdam.
  • 78. Sokolov, V.N., Yurkovets, D.I. and Razgulina, O.V. 2002. Stiman (Structural Image analysis): a software for quantitative morphological analysis of structures by their images (User’s manual. Version 2.0), 75 p. Laboratory of Electron Microscopy, Moscow State University; Moscow.
  • 79. Szczepański, T. 2005. Assessment of the consolidation state of selected clays based on the analysis of compressibility parameters, 148 p. Unpublished Ph.D. thesis, Faculty of Geology, University of Warsaw; Warsaw. [In Polish]
  • 80. Tovey, N.K. and Wong, W.K. 1973. The Preparation of Soil and Other Geological Material for the SEM, pp. 59-69. International Symposium of Soil Structure; Gothenburg.
  • 81. Trzciński, J. 2004. Combined SEM and computerized image analysis of clay soils microstructure: technique and application. In: Jardine, R.J., Potts, D.M. and Higgins, K.G. (Eds), Advances in geotechnical engineering: The Skempton conference, pp. 654-666. Thomas Telford; London.
  • 82. Trzciński, J. 2008. Microstructure and physico-mechanical properties of tills in Poland. Geologija, 50, S26-S39.
  • 83. Villar, M.V. and Lloret, A. 2001. Variation of the intrinsic permeability of expansive clays upon saturation. In: Adachi, K. and Fukue, M. (Eds), Clay Science for Engineering, pp. 259-266. A.A. Balkema; Rotterdam.
  • 84. Viola, R., Tuller, M., Or, D. and Drasdis, J. 2005. Microstructure of clay-sand mixtures at different hydration states. Proceedings of International Symposium on Advanced Experimental Unsaturated Soil Mechanics, Trento, Italy, 27-29 June 2005. In: Tarantino, A., Romero, E. and Cui, Y.J. (Eds), Advanced experimental unsaturated soil mechanics, pp. 437-442. Taylor and Francis Group; London.
  • 85. Wei, X., Hattab, M., Fleureau, J.M. and Hu, R. 2013. Micro-macro experimental study of two clayey materials on drying paths. Bulletin of Engineering Geology and the Environment, 72, 495-508.
  • 86. Wójcik, E. 2003. Influence of suction pressure on the permeability of selected cohesive soils from Warsaw, 131 p. Unpublished Ph.D. thesis, University of Warsaw; Warsaw. [In Polish]
  • 87. Wyrwicki, R. 1998. Mineral composition of clays of the Poznań series in the Warsaw region, 10 p. Zakład Prac Geologicznych, Wydział Geologii UW, Warszawa; Warsaw. [In Polish]
  • 88. Wyrwicki, R. and Kościówko, H. (Eds) 1996. Methods of clay deposit analysis, pp. 56-76. Państwowy Instytut Geologiczny; Warszawa-Wrocław. [In Polish]
  • 89. Yong, R.N. 1972. Soil technology and stabilization. Proceedings of the 4th Asian Regional Conference on Soil Mechanics and Foundation Engineering, 2, 111-124.
  • 90. Yong, R.N. 2003. Influence of microstructural features on water, ion diffusion and transport in clay soils. Applied Clay Science, 23, 3-13.
  • 91. Zhang, G., Germaine, J.T. and Whittle, A.J. 2005. Drying induced alteration to the microstructure of a tropical soil. Proceedings of International Symposium on advanced experimental unsaturated soil mechanics, Trento, Italy, 27-29 June 2005. In: Tarantino, A., Romero, E. and Cui, Y.J. (Eds), Advanced experimental unsaturated soil mechanics, pp. 443-449. Taylor and Francis Group; London.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6084bf7-dd84-41b6-8706-2e99bb6bf574
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.