PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface free energy of extruded polymer compositions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Suitable adhesive properties of the polymer compositions provide largely outer surface of the product. The aim of the studies was evaluation of the efficiency of the extrusion process and physical properties of PVC modified by selected auxiliary. In the studies PVC was used. PVC was modified by blowing agent (0-1.5% by mass) and antistatic agent (0-0.8% by mass) in the form of polyvinyl chloride concentrates. Efficiency of extrusion process is determined also by selected proprieties of surface layer of a mill cake of polyvinyl chloride. Surface free energy has been calculated in Owens-Wendt method. Antistatic agent causes diminishing of wettability and adsorption of surface layer and eventually increase of surface free energy of surface layer. For ensuring appropriate adhesion properties of a surface layer it would be advisable to use, for polyvinyl chloride modification, the antistatic agent in the amount not smaller than 0.4% by mass in relation to polyvinyl chloride mass. Taking into account research results, which can be useful during the development of processing technology of the polyvinyl chloride used for polymers composites, it can be stated that the content of the blowing agent used, noticeably decreasing polymer mass and simultaneously not worsening the properties of a surface layer, should not exceed 0.5÷1.0% by mass in relation to polyvinyl chloride mass.
Rocznik
Strony
1509--1516
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr., wz.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Polymer Processing, 36 Nadbystrzycka Str., PL-20618 Lublin, Poland
Bibliografia
  • BOUHANK, S., NEKKAA, S., HADDAOUI, N., 2016. Water absorption, biodegradation, thermal and morphological properties of Spartium junceum fiber-reinforced polyvinylchloride composites: Effects of fibers content and surface modification. J. Adhes. Sci. Technol. 30, 13, 1-17.
  • CZARNECKA-KOMOROWSKA, D., WISZUMIRSKA, K., GARBACZ,T., 2018. Films LDPE/LLDPE made from post-consumer plastic:processing, structure, mechanical properties. Adv. Sci. Technol. Res. J. 12, 134-142.
  • COURAD, L., MICHEL, F., MARTIN, M., 2011. The evaluation of the surface free energy of liquids and solids in concrete technology. Constr. Build. Mater. 25, 1, 260-266.
  • DALET, P., PAPON, E., VILLENAVE, J. J.,1999. Surface free energy of polymeric materials: of conventional contact angle data analyses. J. Adhes. Sci. Technol.13, 8, 857-870.
  • DELLA VOLPE, C., DEIMICHEI, A., RICCO, T., 1998. A multiliquid approach to the surface free energy determination of flame -treated surfaces of rubber -toughened polyethylene., J. Adhes. Sci. Technol. 11, 1141-1180.
  • GARBACZ, T.,2004. Wpływ wybranych środków pomocniczych na właściwości warstwy wierzchniej wytłaczanego polietylenu. Polimery W. 49, 1, 23-28.
  • GARBACZ, T., 2012. Structure and properties of cellular thin-walled cable coatings. Polimery W. 57, 11-12, 91-94.
  • ISO8296: 2003. Plastics, Film and sheeting. Determination of wetting tension.
  • KOVALEV, A., STURM, H., 2013. Polymer adhesion. In Encyclopedia of Tribology. Wang Q J, Chung Y-W, Eds. Boston: Springer, 2551–2556.
  • MYSHKIN, N., KOVALEV, A., SPALTMAN, D., WOYDT, M., 2014. Contact mechanics and tribology of polymer composites. J. Appl. Polym. Sci.131, 3, 3987–3987.
  • NOWAK, W., PODSIADŁO, H., 2017. Zwilżalność powierzchni zadrukowanych biodegradowalnych folii. Przem. Chem. 96, 2272-2274.
  • PALUTKIEWICZ, P., GARBACZ, T., 2016. The influence of blowing agent adition, glass fiber filler content and mold temperature on selected properties, surface state and structure of injection molded parts from polyamide 6. Cell. Polym.35, 159-192.
  • HARDING, R. H.,1997. The role of adhesion in the mechanical properties of filled polymer composites. J. Adhes. Sci. Technol.11, 471-493.
  • KLEPKA,T., JEZIÓRSKA,R., SZADKOWSKA,A., 2015. Thin wall products made of modified high density polyethylene, Przem. Chem 94, 1352-1355.
  • KLEPKA,T., 2001. Wskaźniki charakteryzujące wzajemne oddziaływanie rury osłonowej i kabla optotelekomunikacyjnego. Polimery W. 46, 192-201.
  • POCIUS, V. A., 2012. Adhesion and adhesives technology, Carl Hanser Publishers, Munich-Vienna.
  • TOR-ŚWIĄTEK, A.,GARBACZ, T., JACHOWICZ, T., 2016. Quantitative assessment of the microscopic structure of extruded and injected low-density polyethylene modified with microspheres by image analysis. Cell. Polym.35, 49-66.
  • ZENG, H., 2013. Adhesion and friction mechanisms of polymer surfaces and thin films. In Polymer Adhesion, Friction, and Lubrication. Zeng H, Ed. Hoboken: John Wiley & Sons, 391–442.
  • ŻENKIEWICZ, M.,2000. Adhezja i modyfikowanie warstwy wierzchniej tworzyw wielkocząsteczkowych. WNT, Warszawa.
  • ŻENKIEWICZ,M., 2007. Main methods for surface free energy analysis of polymeric materials. Polimery W.10, 760-767. www.intechopen.com, 20.04.2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b606f660-c626-48e1-95fb-e02810f86446
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.