PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A qualitative study of mixing a fluid inside a mechanical mixer with the effect of thermal buoyancy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is concerned with the rotational motion of the impeller and the thermal buoyancy within a mechanical mixer. The task was investigated numerically using the ANSYS-CFX simulator. The programmer is based on the finite volume method to solve the differential equations of fluid motion and heat transfer. The impeller has hot surfaces while the vessel has cold walls. The rotational movement of the impeller was controlled by the Reynolds number, while the intensity of the thermal buoyancy effect was controlled by the Richardson number. The equations were solved for a steady flow. After analyzing the results of this research, we were able to conclude that there is no effect of the values of Richardson number on the power number. Also, with the presence of the thermal buoyancy effect, the quality of the fluid mixing becomes more important. The increasing Richardson number increases the value of the Nusselt number of the impeller.
Rocznik
Strony
105--119
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • University of Science and Technology of Oran Mohamed-Boudiaf, Faculty of Chemistry, BP 1505, El-Menaouer, Oran, 31000, Algeria
  • University of Science and Technology of Oran Mohamed-Boudiaf, Laboratory of Sciences and Marine Engineering, Faculty of Mechanical Engineering, BP 1505, El-Menaouer, Oran, 31000, Algeria
  • Stellenbosch University, Faculty of Military Science, Private Bag X2, Saldanha 7395, South Africa
  • University of Science and Technology of Oran Mohamed-Boudiaf, Laboratory of Sciences and Marine Engineering, Faculty of Mechanical Engineering, BP 1505, El-Menaouer, Oran, 31000, Algeria
  • University of Science and Technology of Oran Mohamed-Boudiaf, Faculty of Chemistry, BP 1505, El-Menaouer, Oran, 31000, Algeria
Bibliografia
  • [1] Hadjeb A., Bouzit M., KamlaY., Ameur H.: A new geometrical model for mixing of highly viscous fluids by combining two-blade and helical screw agitators. Pol.J. Chem. Technol. 19(2017), 83–91.
  • [2] Ameur H.: Agitation of yield stress fluids in different vessel shapes. Eng. Sci. Technol. Int. J. 19(2016), 189–196.
  • [3] Ameur H., Bouzit M., Helmaoui M.: Hydrodynamic study involving a maxblend impeller with yield stress fluids. J. Mech. Sci. Technol. 26(2012), 1523–1530.
  • [4] Ameur H., Bouzit M.: Numerical investigation of flow induced by a disc turbine inunbaffled stirred tank. Acta Sci. 35(2013), 469-476.
  • [5] Ameur H., Bouzit M.: 3D hydrodynamics and shear rates variability in the UnitedStates Pharmacopeia paddle dissolution apparatus. Int. J. Pharm. 452(2013), 42–51.
  • [6] Ameur H., Bouzit M., Ghenaim A.: Numerical study of the performance of multistage Scaba 6SRGT impellers for the agitation of yield stress fluids in cylindrical tanks. J. Hydrodyn. Ser. B 27(2015), 3, 436–442.
  • [7] Ameur H., Sahel D., Kamla Y.: Energy efficiency of a deep hollow bladed impeller for mixing viscoplastic fluids in a cylindrical vessel. Adv. Mech. Eng. 9(2017), 1–7.
  • [8] Ameur H., Kamla Y., Sahel D.: Optimization of the operating and design conditions to reduce the power consumption in a vessel stirred by a paddle impeller. Period. Polytech. Mech. Eng. 62(2018), 312–319.
  • [9] Ameur H., Bouzit M.: Power consumption for stirring shear thinning fluids by twoblade impeller. Energy 50(2013), 326–332.
  • [10] Ameur H., Bouzit M., Helmaoui M.: Numerical study of fluid flow and power consumption in a stirred vessel with a Scaba 6SRGT impeller. Chem. Process Eng.32(2011), 351–366.
  • [11] Cudak M.: Numerical analysis of hydrodynamics in a mechanically agitated gasliquid pseudophase system. Chem. Pap. 73(2018), 481–489.
  • [12] Laidoudi H.: Hydrodynamic analyses of the flow patterns in stirred vessel of two bladed impeller. J. Serb. Soc. Comput. Mech. 14(2020), 117–132.
  • [13] Foukrach M., Bouzit M., Ameur H., Kamla Y.: Influence of the vessel shape on the performance of a mechanically agitated system. Chem. Pap. 73(2018), 469–480.
  • [14] Mishra V.P., Kumar P., Joshi J.B.: Flow generated by a disc turbine in aqueous solutions of polyacrylamide. Chem. Eng. J. 71(1998), 11–21.
  • [15] Youcefi S., Bouzit M., Ameur H., Kamla Y., Youcefi A.: Effect of some design parameters on the flow fields and power consumption in a vessel stirred by a Rushton turbine. Chem. Process Eng. 34(2013), 293–307.
  • [16] Torre J.P., Fletcher D.F., Lasuye T., Xuereb C.: Single and multiphase CFD approaches for modelling partially baffled stirred vessels: Comparison of experimental data with numerical predictions. Chem. Eng. Sci. 62(2007), 6246–6262.
  • [17] Heidari A.: CFD simulation of impeller shape effect on quality of mixing in two-phase gas-liquid agitated vessel. Chinese J. Chem. Eng. 28(2020), 2733–2745.
  • [18] Ghotli R.A., Shafeeyan M.S., Abbasi M.R., Ramand A.A.A., Ibrahim S.: Macromixing study for various designs of impellers in a stirred vessel. Chem. Eng. Process. – Process Intensific. 148(2020), 107794.
  • [19] Ghotli R.A.R, Abbas M.R., Bagheri A.H., Raman A.A.A., Ibrahim S., Bostanci H.: Experimental and modeling evaluation of droplet size in immiscible liquid-liquid stirred vessel using various impeller designs. J. Taiwan Inst. Chem. Eng. 100(2019), 26–36.
  • [20] Yamamoto T., Fang Y., KomarovS.V.: Surface vortex formation and free surface deformation in an unbaffled vessel stirred by on-axis and eccentric impellers. Chem. Eng. J. 367(2019), 25–36.
  • [21] Yang F., Zhou S., An X.: Gas-liquid hydrodynamics in a vessel stirred by dual dislocated-blade Rushton impellers. Chinese J. Chem. Eng. 23(2015), 1746–1754.
  • [22] Magelli F., Montante G., Pinelli D., Paglianti A.: Mixing time in high aspect ratio vessels stirred with multiple impellers. Chem. Eng. Sci. 101(2013), 712–720.
  • [23] Takahashi K., Motoda M.: Chaotic mixing created by object inserted in a vessel agitated by an impeller. Chem. Eng. Res. Des. 87(2009), 386–390.
  • [24] Cudmore G.C., Holloway A.G.L., Gerber A.G.: A model of impeller whirl for baffled mixing vessels. J. Fluid. Struct. 54(2015), 719–742.
  • [25] Woziwodzki S.: Mixing of viscous Newtonian fluids in a vessel equipped with steady and unsteady rotating dual-turbine impellers. Chem. Eng. Res. Des. 92(2014), 3,435–446.
  • [26] Laidoudi H.: Enhancement of natural convection heat transfer in concentric annular space using inclined elliptical cylinder. J. Nav. Arch. Mar. Eng. 17(2020), 89–99.
  • [27] Aliouane I., Kaid N., Ameur H., Laidoudi H.: Investigation of the flow and thermal fields in square enclosures: Rayleigh-Bénard’s instabilities of nanofluids. Therm. Sci. Eng. Prog. 25(2021), 100959.
  • [28] Laidoudi H., Bouzit M.: The effects of aiding and opposing thermal buoyancy on downward flow around a confined circular cylinder. Period. Polytech. Mech. Eng. 62(2018), 42–50.
  • [29] Godoy T.: Singular elliptic problems with Dirichlet or mixed Dirichlet-Neumann non-homogeneous boundary conditions. Opuscula Math. 43(2023), 19–46.
  • [30] Szymański P., Mikielewicz D.: Challenges in operating and testing loop heat pipes in 500–700 K temperature ranges. Arch. Thermodyn. 43(2022), 2, 61–73.
  • [31] Cyklis P.: Heat transfer in falling film evaporators during the industrial process of apple juice concentrate production. Arch. Thermodyn. 39(2018), 3, 3–13.
  • [32] Bulat P.V., Volkov K. N.: Fluid/solid coupled heat transfer analysis of a free rotating disc. Arch. Thermodyn. 39(2018), 3, 169–192.
  • [33] ANSYS-CFX. https://www.ansys.com/products/fluids/ansys-cfx (acessed 11 Aug. 2022).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5ffc7e8-28c3-4036-a784-0c1a151ea1b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.