PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Ageing on Selected Properties of Polylactide Modified with Blowing Agents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The modification of processing and functional properties of polymeric materials is widely used in polymer processing. The current progress in this field involves the introduction of new ways of modifying polymers, often by changing their structure from homogeneous to porous. As a result, these polymers have lower density, and thus modified processing and functional properties. The paper presents the results of a study on the selected properties of the injection-molded specimens of polylactide (PLA) modified with blowing agents, before and after thermal ageing. Blowing agents with exothermic (Hydrocerol 530) and endothermic decomposition (Hydrocerol ITP-810, Expancel 951 MB 120 and LyCell F-017) were used. The mass content of the blowing agents was changed in the range from 0.5% to 3%. The study involved examination of the changes in properties such as Young’s modulus, tensile strength, tensile stress, strain at maximum tensile stress, Vicat softening temperature and impact strength depending on the mass content and type of blowing agent before and after the ageing process.
Twórcy
  • Lublin University of Technology, Mechanical Engineering Faculty, Department of Technology and Polymer Processing, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Mechanical Engineering Faculty, Department of Technology and Polymer Processing, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • l.majewski@pollub.pl
  • Lublin University of Technology, Mechanical Engineering Faculty, Department of Technology and Polymer Processing, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Mechanical Engineering Faculty, Department of Technology and Polymer Processing, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Jachowicz T., Sikora R.: Methods of forecasting of the changes of polymeric products properties. Polimery, 3(51), 2006, 177–185.
  • 2. Cangialosi D., Boucher V.M., Colmeneroabc J.: Physical aging in polymers and polymer nano composites: recent results and open questions. Soft Matter, 9, 2013, 8619–8630.
  • 3. Lewis P.R.: Forensic polymer engineering: why polymer products fail in service. Woodhead/CRC Press, 2016.
  • 4. Ghosh S., Khastgir D., Bhowmick A.: Thermal degradation and aging of segmented polyamides. Polymer Degradation and Stability, 3(67), 2000, 427–436.
  • 5. Kaynak C., Sari B.: Accelerated weathering performance of polylactide and its montmorillonite nanocomposite. Applied Clay Science, 121–122, 2016, 86–94.
  • 6. Monnier X., Saiter A., Dargent E.: Physical aging in PLA through standard DSC and fast scanning calorimetry investigations. Thermochimica Acta, 648, 2017, 13–22.
  • 7. Celina M., Gillen K.T., Assink R.A.: Accelerated aging and lifetime prediction: review of non-Arrhenius behavior due to two competing processes. Polymer Degradation and Stability, 90(3), 2005, 395–404.
  • 8. Hu Y., Lang, A. W., Li X., Nutt S.R.: Hygrothermal aging effects on fatigue of glass/polydicyclopentadiene composites. Polymer Degradation and Stability, 110, 2014, 464–472.
  • 9. Tor-Świątek A., Sikora J.: Effect of poly (vinyl chloride) modification with microspheres on geometric structure of extrudates. Przemysł Chemiczny, 92(4), 538–541
  • 10. Jia Z., Tan J., Han C., Yang Y., Dong L.: Poly (ethylene glycol-co-propylene glycol) as macromolecular plasticizing agent for polylactide: thermomechanical properties and aging. Journal of Polymer Science, 114, 2, 2009, 1105–1117.
  • 11. Miertus S., Ren, X.: Environmetally degradable plastics and waste management. Polimery, 7–8(47), 2002, 545–550.
  • 12. Chiellini E., Cinelli, P., D’Antone, S., Ilieva, V. I.: Environmentally degradable polymeric materials (EDPM) in agricultural applications – an overview. Polimery, 7–8(47), 2002, 538–544.
  • 13. Tor-Swiatek A.; Suberlyak D., Krasins’kyi B. & et al.: Distribution and Geometric Characteristics of Pores and the Strength Properties of Extrudates Obtained by the Twin-Screw Extrusion. Materials Science Volume, 49(6), 812–818.
  • 14. Brzozowska-Stanuch A., Rabiej S., Stanuch, W.: The influence of accelerated weathering conditions – UV radiation and temperature on polyamides and polypropylene. Technical Transactions, 3(106), 2009, 43–49.
  • 15. Xanthos M.: Functional fillers for plastics. Wiley- VCH Verlag GmbH & Co. KGaA, Weinhaim, 2010.
  • 16. Pospisil J., Horak Z., Krulis Z., Nespurek S., Kuroda S.: Degradation and aging of polymer blends I. Thermomechanical and thermal degradation. Polymer Degradation and Stability, 65(3), 1999, 405–414.
  • 17. Głogowska K., Sikora J., Duleba B.: Effect of mechanical properties of metal powder-filled hybrid moulded products. Journal of Polymer Engineering, 7(36), 2016, 705–712.
  • 18. Ito M., Nagai, K.: Degradation issues of polymer materials used in railway field. Polymer Degradation and Stability, 10(93), 2008, 1723–1735.
  • 19. Ito M., Inayoshi, S., Moriyama, K.: A simple method for evaluation of heat resistant property of elastomers. Polymer Degradation and Stability, 10(93), 2008, 1935–1938.
  • 20. Boubakri A., Haddar N., Elleuch K., Bienvenu Y.: Impact of aging conditions on mechanical properties of thermoplastic polyurethane. Materials & Design, 31(9), 2010, 4194–4201.
  • 21. Ito M., Nagai K.: Analysis of degradation mechanism of plasticized PVC under artificial aging conditions. Polymer Degradation and Stability, 92(2), 2007, 260–270.
  • 22. Garbacz T.: Structure and properties of cellular thin-walled cable coatings. Polimery, 11–12(57), 2012, 91–94.
  • 23. Garbacz T., Jachowicz T., Gajdos I., Kijewski G.: Research on the influence of blowing agent on selected properties of extruded cellular products. Advances in Science and Technology, 9(28), 2015, 81–88.
  • 24. Product specification for Expancel® Microspheres, Expancel MB. Issue 2017.11. www.expancel.akzonobel.com, access 15.05.2018.
  • 25. Introduction to Expancel®. Bound Minerals. www. bound.com, access 15.05.2018.
  • 26. Chemical foaming agents, Hydrocerol® basics. www.clariant.com, access 15.05.2018.
  • 27. Weber H., De Grave I., Röhrl E., Altstädt V.: Foamed plastics. Ullmann’s Encyclopedia of Industrial Chemistry. Willey VCH. 2016.
  • 28. Sadik T., Pillon C., Carrot C., Reglero Ruiz J.: Dsc studies on the decomposition of chemical blowing agents based on citric acid and sodium bicarbonate. Thermochimica Acta, 659, 2018, 74–81.
  • 29. Wyrzykowski D., Hebanowska E., Nowak-Wiczk G., Makowski M., Chmurzyński L.: Thermal behaviour of citric acid and isomeric aconitic acids. Journal of Thermal Analysis and Calorimetry, 2(104), 2011, 731–735.
  • 30. ASTM F1980–07 (2011). Standard Guide for Accelerated Aging of Sterile Barrier Systems for Medical Devices.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5fbd30d-9ba8-4f89-9405-b299bd8c7863
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.