PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Dual manipulator system calibration based on virtual constraints

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Calibration is necessary for dual manipulator to complete operational tasks. This paper proposes an effective robot-robot and hand-eye calibration method based on virtual constraints. Firstly, a rotational error model and a translational error model are established based on the relationships between the transformation matrices of the dual manipulator calibration system. Then a poses-alignment method is designed to make the poses of the two robots satisfy the constructed virtual constraints. At the aligned positions, the joint angles of the two robots are saved and used to calculate the values of the variables in the error models. Finally, the robot-robot and hand-eye rotational errors are estimated by an iterative algorithm. These errors are then used to calculate translational errors based on the SVD (singular value decomposition) method. To show the feasibility and effectiveness of the proposed method, experiments of robot-robot and hand-eye calibration for dual manipulators are performed. The experiment results demonstrate that the accuracy of the dual manipulator system is improved greatly.
Rocznik
Strony
1149--1159
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • College of Automation, Harbin Engineering University, Harbin 150001, China
autor
  • College of Automation, Harbin Engineering University, Harbin 150001, China
autor
  • College of Automation, Harbin Engineering University, Harbin 150001, China
Bibliografia
  • [1] J. Vangal-Ramamurthy, R. Vasudevan, and R. Perez, “Method and devices for picking and placing workpieces into devices under manufacture using dual robots”, U.S. Patent Application10(39), 219 (2018).
  • [2] P. Aivaliotis, G. Michalos, and S. Makris, “Cooperating robots for fixtureless assembly: modelling and simulation of tool exchange process”, International Journal of Computer Integrated Manufacturing 31(12), 1235‒1246 (2018).
  • [3] C. Zieliński and T. Winiarski, “General specification of multi-robot control system structures”, Bull. Pol. Ac.: Tech. 58(1), 15‒28 (2010).
  • [4] W. Wang, H. Song, Z. Yan, and L. Sun, “A universal index and an improved PSO algorithm for optimal pose selection in kinematic calibration of a novel surgical robot”, Robotics and Computer-Integrated Manufacturing 50, 90‒101 (2018).
  • [5] I. Duleba and I. Karcz-Duleba, “Suboptimal approximations in repeatable inverse kinematics for robot manipulators”, Bull. Pol. Ac.: Tech. 65(2), 209‒217, (2017).
  • [6] Y. Meng and H. Zhuang, “Autonomous robot calibration using vision technology”, Robot. Comp. Integr. Manuf 4(23), 436–446 (2007).
  • [7] F. Dornaika and R. Horaud, “Simultaneous robot-world and hand-eye calibration”, IEEE Trans. Robot. Autom 14(4), 617–622 (1998).
  • [8] W. Wang, F. Liu, and C. Yun, “Calibration method of robot base frame using unit quaternion form”, Precision Eng, 41, 47–54 (2015).
  • [9] A. Li, L. Wang, and D. Wu, “Simultaneous robot-world and hand-eye calibration using dual-quaternions and Kronecker product”, Int. J. Phys. Sci. 5(10), 1530–1536 (2010).
  • [10] M. Shah, “Solving the robot-world/hand-eye calibration problem using the Kronecker product”, J. Mech.Robot., 5(3), 031007, 2013.
  • [11] J. Heller, D. Henrion, and T. Pajdla, “Hand-eye and robot-world calibration by global polynomial optimization”. Proceedings of IEEE International Conference Robotics Automation (ICRA), 30, pp. 3157–3164, 2014.
  • [12] L. Wu, J. Wang, L. Qi, K. Wu, H. Ren, and M.Q.H. Meng, “Simultaneous hand-eye, tool-flange, and robot–robot calibration for comanipulation by Solving the AXB = YCZ Problem”, IEEE Trans. Robot. 32 (2), 413–428 (2016).
  • [13] Q. Ma, Z. Goh, S. Ruan, and G.S. Chirikjian, “Probabilistic approaches to the AXB = YCZ AXB = YCZ calibration prob-lem in multi-robot systems”, Autonomous Robots 42, 1497‒1520 (2018)
  • [14] G. Du and P. Zhang, “Online robot calibration based on vision measurement”, Robot. Comp. Integr. Manuf. 29, 484–492 (2013).
  • [15] H. Wang, X. Lu, Z. Hu, and Y. Li, “A vision-based fully-automatic calibration method for hand-eye serial robot”, Ind. Robot42(1), 64–73 (2015).
  • [16] Y.H. Gan and X.Z. Dai, “Base frame calibration for coordinated industrial robots”, Robot. Auton. Syst. 59, 563–570 (2011).
  • [17] H. Deng, H. Wu, C. Yang, Y. Guan, H. Zhang, and J. Liu, “Base frame calibration for multi-robot coordinated systems”. Proceedings of the 2015 IEEE Conference on Robotics and Biomimetics, Zhuhai, China, December 6–9, 2015.
  • [18] R.G. Bonitz and T.C. Hsia, “Calibrating a multi-manipulator robotic system”, IEEE Robot. Autom. Mag 4(1), 18–22 (1997).
  • [19] R.L. Hirsh, G.N. DeSouza, and A.C. Kak, “An iterative approach to the hand-eye and base-world calibration problem”. Proceedings of IEEE International Conference on Robotics and Automation, 3, pp. 2171–2176, 2001.
  • [20] D. Wu and H. Ren, “Finding the kinematic base frame of a robot by hand-eye calibration using 3D position”, IEEE Trans. Autom. Sci. Eng. 99, 1–11 (2016).
  • [21] Q. Zhu, X. Xie, C. Li, G. Xia, and Q. Liu, “Kinematic Self-Calibration Method for Dual-Manipulators Based on Optical Axis Constraint”, IEEE Access 7, 7768‒7782 (2019).
  • [22] A. Joubair and I.A. Bonev, “Comparison of the efficiency of five observability indices for robot calibration”, Mechanism & Machine Theory, 70, 254‒265 (2013).
  • [23] G. Taubin, “3D Rotations”, IEEE computer graphics and applications, 31(6), 84‒89 (2011).
  • [24] S.A. Hayati, “Robot arm geometric link parameter estimation,” in The 22nd IEEE Conf. Decision and Control., 1477‒1483 (1983).
  • [25] W.S. Newman and D.W. Osborn, “A new method for kinematic parameter calibration via leser line tracking”, in IEEE Int. Conf. Robotics and Automation, Atlanta, USA. 160‒165, 1993.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5fa1de4-e015-4d76-b67b-265ee132c717
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.