PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional-order derivative and time-dependent viscoelastic behaviour of rocks and minerals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A general constitutive equation for viscoelastic behaviour of rocks and minerals with fractional-order derivative is investigated. This constitutive law is derived based on differential geometry and thermodynamics of rheology, and the fractional order of derivative represents the degree of time delay. Analyzing some laboratory experimental data of high temperature deformation of rocks and minerals such as halite, marble and orthopyroxene, we propose how to determine the orders of fractional derivative for viscoelastic behaviours of rocks and minerals. The order is related to the exponents for the temporal scaling in the relaxation modulus and the stress power-law of strain rate, i.e., the non-Newtonian flow law, and considered as an indicator representing the macroscopic behaviour and microscopic dynamics of rocks.
Czasopismo
Rocznik
Strony
1690--1702
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • Earthquake Research Institute, University of Tokyo, Tokyo, Japan
  • Vector Research Institute, Inc., Tokyo, Japan
autor
  • Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Kobe, Japan
autor
  • Department of Geoenvironmental Sciences, Graduate School of Science, Tohoku University, Sendai, Japan
Bibliografia
  • 1. Bagley, R.L., and P.J. Torvik (1983), Fractional calculus - A different approach to the analysis of viscoelastically damped structures, AIAA J. 21,5, 741-748, DOI: 10.2514/3.8142.
  • 2. Biot, M.A. (1954), Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena, J. Appl. Phys. 25,11, 1385-1391, DOI: 10.1063/1.1721573.
  • 3. Caputo, M., and F. Mainardi (1971), A new dissipation model based on memory mechanism, Pure Appl. Geophys. 91, 134-147, DOI: 10.1007/BF00879562.
  • 4. Coussot, C., S. Kalyanam, R. Yapp, and M.F. Insana (2009), Fractional derivative models for ultrasonic characterization of polymer and breast tissue viscoelasticity, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56,4, 715-726, DOI: 10.1109/TUFFC.2009.1094.
  • 5. Findley, W.N., J.S. Lay, and K. Onaran (1976), Creep and Relaxation of Nonlinear Viscoelastic Materials: with an Introduction to Linear Viscoelasticity, North-Holland Series in Applied Mathematics and Mechanics, Vol. 18, North-Holland, Amsterdam.
  • 6. Fung, Y.C. (1965), Foundations of Solid Mechanics, Prentice-Hall International Series in Dynamics, Vol. 1, Prentice-Hall, London.
  • 7. Hanyga, A. (2007), Fractional-order relaxation laws in non-linear viscoelasticity, Continuum Mech. Thermodyn. 19,1-2, 25-36, DOI: 10.1007/s00161-007-0042-0.
  • 8. Hanyga, A., and M. Seredyńska (2008), Hamiltonian and Lagrangian theory of viscoelasticity, Continuum Mech. Thermodyn. 19,8, 475-492, DOI: 10.1007/s00161-007-0065-6.
  • 9. Heard, H.C. (1963), Effect of large changes in strain rate in the experimental deformation of Yule marble, J. Geol. 71,2, 162-195, DOI: 10.1086/626892.
  • 10. Heard, H.C. (1972), Steady-State flow in polycrystalline halite at pressures of 2 kilobars. In: H.C. Heard et al. (eds.), Flow and Fracture of Rocks, Geophysi cal Monograph Series, Vol. 16, AGU, Washington, D.C., DOI: 10.1029/GM016p0191.
  • 11. Heard, H.C., and C.B. Raleigh (1972), Steady-state flow in marble at 500° to 800 °C, Geol. Soc. Am. Bull. 83,4, 935-956, DOI: 10.1130/0016-7606(1972)83[935:SFIMAT]2.0.CO;2.
  • 12. Ikeda, S. (1975), Prolegomena to Applied Geometry, Mahā ShobŌ, Koshigaya (in Japanese, the contents related to our discussion are also referred in English in Yajima and Nagahama 2010).
  • 13. Ikeda, S. (1985), Differential Geometrical Studies in Rheology - Fundamental Theories of Rheological Deformation Fields by means of Differential Geometry, Nippatsu Shuppan, Tokyo (in Japanese, the contents related to our discussion are also referred in English in Yajima and Nagahama 2010).
  • 14. Karato, S. (2008), Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth, Cambridge University Press, Cambridge.
  • 15. Kawada, Y., and H. Nagahama (2004), Viscoelastic behaviour and temporal fractal properties of lherzolite and marble: possible extrapolation from experimental results to the geological time-scale, Terra Nova 16,3, 128-132, DOI: 10.1111/j.1365-3121.2004.00540.x.
  • 16. Kawada, Y., and H. Nagahama (2006), Cumulative Benioff strain-release, modified Omori’s law and transient behaviour of rocks, Tectonophysics 424,3-4, 157-166, DOI: 10.1016/j.tecto.2006.03.032.
  • 17. Kawada, Y., H. Nagahama, and H. Hara (2006), Irreversible thermodynamic and viscoelastic model for power-law relaxation and attenuation of rocks, Tectonophysics 427,1-4, 255-263, DOI: 10.1016/j.tecto.2006.03.049.
  • 18. Koeller, R.C. (1984), Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech. 51,2, 299-307, DOI: 10.1115/1.3167616.
  • 19. Nagahama, H. (1994), High-temperature viscoelastic behaviour and long time tail of rocks. In: J.H. Kruhl (ed.), Fractal and Dynamical Systems in Geosciences, Springer, Berlin, 121-129.
  • 20. Nakamura, N., and H. Nagahama (1999), Geomagnetic field perturbation and fault creep motion: a new tectonomagnetic model. In: M. Hayakawa (ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, TERRAPUB, Tokyo, 307-323.
  • 21. Nutting, P.G. (1921), A new general law of deformation, J. Franklin Inst.-Eng. Appl. Math. 191,5, 679-685, DOI: 10.1016/S0016-0032(21)90171-6.
  • 22. Ohuchi, T., S. Karato, and K. Fujino (2011), Strength of single-crystal orthopyroxene under lithospheric conditions, Contrib. Mineral. Petr. 161,6, 961-975, DOI: 10.1007/s00410-010-0574-3.
  • 23. Podlubny, I. (2002), Geometric and physical interpretations of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal. 5,4, 367-386.
  • 24. Poirier, J.P. (1980), Creep of Crystals, Cambridge University Press, Cambridge.
  • 25. Rossikhin, Y.A., and M.V. Shitikova (1997), Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev. 50,1, 15-67, DOI: 10.1115/1.3101682.
  • 26. Schapery, R.A. (1964), Application of thermodynamics to thermomechanical, fracture, and birefringent phenomena in viscoelastic media, J. Appl. Phys. 35,5, 1451-1465, DOI: 10.1063/1.1713649.
  • 27. Schiessel, H., and A. Blumen (1993), Hierarchical analogues to fractional relaxation equations, J. Phys. A. 26,19, 5057-5069, DOI: 10.1088/0305-4470/26/19/034.
  • 28. Schiessel, H., R. Metzler, A. Blumen, and T.F. Nonnenmacher (1995), Generalized viscoelastic models: their fractional equations with solutions, J. Phys. A 28,23, 6567-6584, DOI: 10.1088/0305-4470/28/23/012.
  • 29. Shimamoto, T. (1987), High-temperature viscoelastic behavior of rocks. In: Proc. 7th Japan Symposium on Rock Mechanics, Japanese Committee of Rock Mechanics, Tokyo, 467-472 (in Japanese with English abstract).
  • 30. Suguri, T. (1952), Theory of invariants in the geometry of paths, J. Math. Soc. Japan 4,3-4, 231-268, DOI: 10.2969/jmsj/00430231.
  • 31. Turcotte, D.L., and G. Schubert (2002), Geodynamics, 2nd ed., Cambridge University Press, Cambridge.
  • 32. Yajima, T., and H. Nagahama (2010), Differential geometry of viscoelastic models with fractional-order derivatives, J. Phys. A 43,38, 385207, DOI: 10.1088/1751-8113/43/38/385207.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5f9ce1f-9ee5-4c50-96d9-91c1dda1e941
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.