PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrogen production by dry reforming of kerosene using microwave plasma

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Produkcja wodoru na drodze suchego reformingu nafty w plazmie mikrofalowej
Języki publikacji
EN
Abstrakty
EN
This paper presents results of study of dry reforming of kerosene using a microwave plasma. The plasma was generated in waveguide supplied metal-cylinder-based nozzleless microwave plasma source (MPS) operated at 915 MHz. The rotational temperature of heavy species (assumed to be close to gas temperature) was up to 5500 K (for plasma without kerosene). The hydrogen production rate was up to 470 NL[H2]/h and the energy efficiency was 89.5 NL[H2] per kWh of absorbed microwave.
PL
Artykuł przedstawia wyniki badań suchego reformingu nafty w plazmie mikrofalowej (915 MHz). Temperatura rotacyjna cząstek ciężkich (przyjmowana jako zbliżona do temperatury gazu) wynosiła do 5500 K (dla plazmy bez dodatku nafty). Uzyskana wydajność produkcji wodoru wynosiła do 470 NL [H2]/h, natomiast efektywność energetyczna do 89,5 NL [H2] na kWh zaabsorbowanej energii mikrofal.
Rocznik
Strony
40--43
Opis fizyczny
Bibliogr. 16 poz., wykr.
Twórcy
autor
  • The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, 80-231 Gdańsk
autor
  • The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, 80-231 Gdańsk
  • The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, 80-231 Gdańsk
autor
  • The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, 80-231 Gdańsk
autor
  • The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, 80-231 Gdańsk
  • Gdynia Maritime University, Faculty of Marine Electrical Engineering, Morska 81-87, 81-225 Gdynia
Bibliografia
  • [1] Holladay J.D., Hu J., King D.L., Wang Y., An overview of hydrogen production technologies, Catalysis Today, 139 (2009), n.4, 244-260
  • [2] Sato T., Fujioka K., Ramasamy R., Urayama T., Fujii S., Sterilization Efficacy of a Coaxial Microwave Plasma Flow at Atmospheric Pressure, IEEE Trans. on Industry Appl., 42 (2006), n.2, 399-404
  • [3] Peelamedu R., Kumar D., Kumar S., Microwave atmospheric pressure plasma for surface treatment and reactive coating on steel surfaces, Surf. & Coat. Technol., 201 (2006), n.19-20, 4008-4013
  • [4] Wylie S.R., Al-Shamma’a A.I., Lucas J., Stuart R.A., An atmospheric microwave plasma jet for ceramic material processing, J. Mater. Process. Technol., 153-4 (2004), 288-293
  • [5] Jasiński M., Dors M. Mizeraczyk J., Destruction of Freon HFC- 134a Using a Nozzleless Microwave Plasma Source, Plasma Chem. Plasma Process., 29 (2009), n.5, 363-372
  • [6] Jasiński M., Czylkowski D., Hrycak B., Dors M., Mizeraczyk J., Atmospheric pressure microwave plasma source for hydrogen production, Int. J. Hydrogen Energy, 38 (2013), n.26, 11473-11483
  • [7] Boudesocque N., Vandensteendam C., Lafon C., Girold C., Baronnet J.M., Hydrogen Production By Thermal Water Splitting Using A Thermal Plasma, 16th World Hydrogen Energy Conference, Lyon, France, Curran Associates, Red Hook, NY (2006), 1616
  • [8] Shin D.H., Hong Y.C., Lee S.J., Kim Y.J., Cho C.H., Ma S.H., Chun S.M., Lee B.J., Uhm H.S., A pure steam microwave plasma torch: Gasification of powdered coal in the plasma, Surf. & Coat. Technol., 228 (2013), Supplement 1, S520-S523
  • [9] Tang L., Huang H., Biomass gasification using capacitively coupled RF plasma technology, Fuel, 84 (2005), n.16, 2055-2063
  • [10] Gomez E., Amutha Rani D., Cheeseman C.R., Deegan D., Wise M., Boccaccini A.R., Thermal plasma technology for the treatment of wastes: A critical review, J. Hazardous Materials, 161 (2009), n.1, 614-626
  • [11] Hrycak B., Czylkowski D., Miotk R., Dors M., Jasiński M., Mizeraczyk J., Hydrogen production from ethanol in nitrogen microwave plasma at atmospheric pressure, Open Chemistry, 13 (2015), n.1, 317–324
  • [12] Czylkowski D., Hrycak B., Miotk R., Jasiński M., Mizeraczyk J., Dors M., Hydrogen production by conversion of ethanol using atmospheric pressure microwave plasmas, Int. J. Hydrogen Energy, in press
  • [13] Hrycak B., Jasiński M., Mizeraczyk J., Spectroscopic study of CO2 plasma in microwave source designed for hydrogen production via hydrocarbons decomposition, Acta Physica Polonica, 125 (2014), n.6, 1326-1328
  • [14] http://www.specair-radiation.net (24.05.2015)
  • [15] Okada A., Kijima K., Measurement of C2 rotational temperature in Ar-SiH4-CH4 inductively coupled plasma flame with Abel inversion, J. Phys. D: Appl. Phys., 35 (2002), n.17, 2126-2132
  • [16] Jasiński M., Czylkowski D., Hrycak B., Dors M., Mizeraczyk J., Hydrogen production via methane conversion in an atmospheric pressure microwave (2.45 GHz) plasma, 5th World Hydrogen Technologies Convention (2013), Shanghai, China, Book of abstracts, 206-207
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5f9940e-e400-446b-9669-b6309e405a98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.