Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper the authors present the results obtained during a direct numerical simulation of the transitional Taylor–Couette flow in closed cavity. The spectral vanishing viscosity method is used to stabilize computations for higher Reynolds numbers. The Taylor–Couette flow is widely used for studying the primary pattern formation, transitional flows and fully turbulent flows. The Taylor–Couette flow is also important from engineering point of view: the results can be interesting for engineers dealing with gas turbines and axial compressors. In the paper the attention is focused on the influence of the end-wall boundary conditions on the flow structures and on statistics (i.e. the radial profiles of the angular velocity, angular momentum, torque, the Reynolds stress tensor components). The results are discussed in the light of experimental and numerical data published in literature (F. Wendt, Ing.-Arch., 4, 1933; H. Brauckmann, B. Eckhardt, J. Fluid Mech., 718, 2013).
Czasopismo
Rocznik
Tom
Strony
395--418
Opis fizyczny
Bibliogr. 30 poz., rys. kolor.
Twórcy
autor
- Institute of Thermal Engineering Poznań University of Technology Piotrowo 3 60-965 Poznań, Poland
autor
- Institute of Thermal Engineering Poznań University of Technology Piotrowo 3 60-965 Poznań, Poland
Bibliografia
- 1. F. Wendt, Turbulente Strömungen zwischen zwei rotierenden konaxialen Zylindern, Ing.- Arch., 4, 577–595, 1933.
- 2. D.P. Lathrop, J. Fineberg, H.L. Swinney, Turbulent flow between concentric rotating cylinders at large Reynolds number, Phys. Rev. Lett., 68, 1515–1518, 1992.
- 3. G.S. Lewis, H.L. Swinney, Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette–Taylor flow, Phys. Rev. E, 59, 5457–5467, 1999.
- 4. A. Racina, M. Kind, Specific power input and local micromixing times in turbulent Taylor–Couette flow, Exp. Fluids, 41, 513–522, 2006.
- 5. A. Barcilon, J. Brindley, M. Lessen, F.R. Mobbs, Marginal instability in Taylor–Couette flows at a high Taylor number, J. Fluid Mech., 94, 453–463, 1979.
- 6. B. Dubrulle, O. Dauchot, F. Daviaud, P.Y. Longaretti, D. Richard, J.P. Zahn, Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data, Phys. Fluids, 17, 095103, 2005.
- 7. A.K. Mujumdar, D.B. Spalding, Numerical computation of Taylor vortices, J. Fluid Mech., 81, 295–304, 1977.
- 8. K.A. Cliffe, T. Mullin, A numerical and experimental study of anomalous modes in the Taylor experiment, J. Fluid Mech., 153, 243–258, 1985.
- 9. O. Czarny, E. Serre, P. Bontoux, R.M. Lueptow, Interaction of wavy cylindrical Couette flow with endwalls, Phys. Fluids, 16, 1140–1148, 2004.
- 10. K.T. Coughlin, P.S. Marcus, Modulated waves in Taylor–Couette flow Part 1. Analysis, J. Fluid Mech., 234, 1–18, 1992.
- 11. K.T. Coughlin, P.S. Marcus, Modulated waves in Taylor–Couette flow Part 2. Numerical simulation, J. Fluid Mech., 234, 19–46, 1992.
- 12. J.A. Vastano, R.D. Moser, Short-time Lyapunov exponent analysis and the transition to chaos in Taylor–Couette flow, J. Fluid Mech., 233, 83–118, 1991.
- 13. S. Dong, Direct numerical simulation of turbulent Taylor–Couette flow, J. Fluid Mech., 587, 373, 2007.
- 14. H. Brauckmann, B. Eckhardt, Direct numerical simulations of local and global torque in Taylor–Couette flow up to Re D 30000, J. Fluid Mech., 718, 398, 2013.
- 15. T. Mullin, C. Blohm, Bifurcation phenomena in a Taylor–Couette flow with asymmetric boundary conditions, Phys. Fluids, 13, 136, 2001.
- 16. K.A. Cliffe, T. Mullin, D. Schaeffer, The onset of steady vortices in Taylor–Couette flow: The role of approximate symmetry, Phys. of Fluids, 24, 064102, 2012.
- 17. J. Abshagen, K.A. Cliffe, J. Langenberg, T. Mullin, G. Pfister, S.J. Tavener, Taylor–Couette flow with independently rotating end plates, Theoret. Comput. Fluid Dynamics, 18, 129–136, 2004.
- 18. M. Avila, Stability and angular-momentum transport of fluid flows between corotating cylinders, Phys. Rev. Lett., 108, 124501, 2012.
- 19. E. Serre, J.P. Pulicani, A three dimensional pseudo-spectral method for convection in rotating cylinder, J. Computers Fluids, 30, 491, 2001.
- 20. E. Tuliszka-Sznitko, K. Kiełczewski, Numerical investigations of Taylor–Couette flow using DNS/SVV method, Comp. Method in Science and Tech., 21, 211–219, 2015.
- 21. I.E. Tadmor, Convergence of spectral methods for nonlinear conservation laws, SIAM, J. Numerical Analysis, 26, 30, 1989.
- 22. E. Severac, E. Serre, A spectral viscosity LES for the simulation of turbulent flows within rotating cavities, J. Comp. Phys., 226, 2, 1234, 2007.
- 23. K. Kiełczewski, E. Tuliszka-Sznitko, Numerical study of the flow structure and heat transfer in rotating cavity with and without jet, Arch. Mech., 65, 527, 2013.
- 24. J. Jeong, F. Hussain, On the identification of a vortex, J. Fluid Mech., 285, 69, 1995.
- 25. P. Chakraborty, S. Balachandar, R.J. Adrian, On the relationships between local vortex identification schemes, J. Fluid Mech., 535, 189–214, 2005.
- 26. B. Eckhardt, S. Grossmann, D. Lohse, Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders, J. Fluid Mech., 581, 221–250, 2007.
- 27. D. Pirro, M. Quadrio, Direct numerical simulation of turbulent Taylor–Couette flow, European J. of Mechanics, B/Fluids, 27, 552–566, 2008.
- 28. G.I. Taylor, Fluid friction between rotating cylinders, 1-torque measurements, Proc. Roy. Soc., Ser. A 157, 546, 1936.
- 29. G.P. Smith, A.A. Townsend, Turbulent Couette flow between concentric cylinders at large Reynolds number, J. Fluid Mech., 123, 187–217, 1982.
- 30. B. Eckhardt, S. Grossmann, D. Lohse, Scaling of global momentum transport in Taylor–Couette and pipe flow, Eur. Phys. J. B 18, 541–544, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5f7cf96-e665-4dd7-bc02-1400034d895d