PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modified Cellulose Products for Application in Hygiene and Dressing Materials (Part I)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modyfikacja produktów celulozowych dla zastosowań higienicznych i opatrunkowych
Języki publikacji
EN
Abstrakty
EN
Modification of commercial cellulose products commonly used in homes and hospitals was the main purpose of the research herein presented. Enhanced moisture sorption and antimicrobial properties were conferred upon regular commercial gauze. Nanoparticles of microcrystalline chitosan and complex chitosan/alginateNa/Ca were used in the modification. A method was elaborated for the preparation of polymeric materials with a particle size below 1 μm by means of an ultrasonic reactor (Hielscher UP 200S). Modified commercial dressing materials were obtained charecterised by a largely increased absorption capacity, thus easing the transportation of moisture to the outside of the dressing and providing an environment optimal for wound healing. Thanks to the internal surface developed and adequately selected composition, the modified cellulosic materials exhibit antibacterial and antifungal properties.
PL
Głównym celem przeprowadzonych badań była modyfikacja komercyjnego materiału celulozowego w postaci gazy opatrunkowej, stosowanej w codziennym użytku jak i w szpitalach, celem nadania im zwiększonej zdolności sorpcji wilgoci jak i właściwości przeciwmikrobowych. Do modyfikacji surowca wykorzystano nano-cząsteczki mikrokrystalicznego chitozanu oraz kompleksu chitozan/alginanNa/Ca. Metodę otrzymywania polimerów o rozmiarach cząstek o wielkości poniżej 1 μm opracowano przy wykorzystaniu reaktora ultradźwiękowego. Otrzymano modyfikowane handlowe materiały opatrunkowe o kilkukrotnie wyższej zdolności sorpcyjnej, które ułatwiają odprowadzanie wilgoci na zewnątrz opatrunku i zapewniają optymalne środowisko gojenia się ran. Modyfikowane materiały celulozowe dzięki rozwiniętej powierzchni wewnętrznej i odpowiednio dobranym składzie charakteryzują się właściwościami przeciwbakteryjnymi oraz przeciwgrzybowymi.
Rocznik
Strony
126--132
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Institute of Biopolymers and Chemical Fibres, Łódź, Poland
autor
  • Institute of Biopolymers and Chemical Fibres, Łódź, Poland
  • Institute of Biopolymers and Chemical Fibres, Łódź, Poland
autor
  • Institute of Biopolymers and Chemical Fibres, Łódź, Poland
  • Lodz University of Technology, Łódź, Poland
Bibliografia
  • 1. Arora S, Jain J, Rajwade J, Paknikar K. Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett. 2008; 179: 93–100.
  • 2. Chi Z, Liu R, Zhao L, Qin P, Pan X, Sun F, Hao X. A new strategy to probe the genotoxicity of silver nanoparticles combined with cetylpyridine bromide. Spectrochim Acta 2009; A 72: 577–581.
  • 3. Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci. Technol. 2008; 42: 4583–4588.
  • 4. Hwang E, Lee J, Chae Y, Kim Y, Kim B, Sang B, Gu M. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 2008; 4: 746–750.
  • 5. Kim J. Antibacterial activity of Ag+ ion-containing silver nanoparticles prepared using the alcohol reduction method. J. Ind. Eng. Chem. 2007; 13: 718–722.
  • 6. Kim J, Kuk E, Yu K, Kim J, Park S, Lee H, Kim S, Park Y, Park Y, Hwang C, Kim Y, Lee Y, Jeong D, Cho M. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol 2007; 3: 95–101.
  • 7. Kim K, Sung W, Moon S, Choi J, Kim J, Lee D. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol. 2008; 18: 1482–1484.
  • 8. Kim Y, Kim J, Cho H, Rha D, Kim J, Park J, Choi B, Lim R, Chang H, Chung Y, Kwon I, Jeong J, Han B, Yu I. Twenty-eight-day oral toxicity, genotoxicity, and genderrelated tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 2008; 20: 575–583.
  • 9. Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. 2008; C, 112: 5825–5834.
  • 10. Lok C, Ho C, Chen R, He Q, Yu W, Sun H, Tam P, Chiu J, Che C. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome. Res. 2006; 5: 916–924.
  • 11. Raffi M, Hussain F, Bhatti T, Akhter J, Hameed A, Hasan M. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J. Mater. Sci. Technol. 2008; 24: 192–196.
  • 12. Schrand A, Braydich-Stolle L, Schlager J, Dai L, Hussain S. Can silver nanoparticles be useful as potential biological labels? Nanotechnology 2008; 19, 23.
  • 13. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interface. Sci. 2004; 275: 177–182.
  • 14. Vertelov G, Krutyakov Y, Efremenkova O, Olenin A, Lisichkin G. A versatile synthesis of highly bactericidal Myramistin_ stabilized silver nanoparticles. Nanotechnology 2008; 19, 23.
  • 15. Choi O, Deng K, Kim N, Ross L, Surampalli R, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008; 42: 3066–3074.
  • 16. Cowan M, Abshire K, Houk S, Evans S. Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J. Ind. Microbiol. Biotechnol. 2003; 30: 102–106.
  • 17. Zhang Y, Peng H, Huang W, Zhou Y, Yan D. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J. Colloid. Interface Sci. 2008; 325: 371–376.
  • 18. Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research 2010; 12, 5: 1531 – 1551.
  • 19. Boholm M, Arvidsson R. Controversy over antibacterial silver: implications for environmental and sustainability assessments. Journal of Cleaner Production 2014; 68, 1: 135-143.
  • 20. Blaser SA, Scheringer M, MacLeod M, Hungerbühler K. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Science of the Total Environment 2008; 390, 2-3, 15: 396-409.
  • 21. Moghe A, Shah C. Bactericidal efficacy of Kerlix™ AMD antimicrobial gauze dressing vs Bioguard™ gauze dressing. Covidien: Mansfield, MA. (Level IV evidence), 2011.
  • 22. Lou Ching-Wen. Process technology and properties evaluation of a chitosan-coated Tencel/cotton nonwoven fabric as a wound dressing. Fibers and Polymers 2008; 9, 3: 286 – 292.
  • 23. Struszczyk MH, Brzoza-Malczewska K, Szalczyńska M. A Nonwovens Coated by Chitosan with Potential Anti-microbial Behaviour – Preliminary Results. Fibres & Textiles in Eastern Europe 2007;. 15, 5 - 6 (64 – 65): 163–166.
  • 24. Cullen BM, Addison D, Greenhalgh D. CA2529413. Antioxidant wound dressing materials.
  • 25. Cho Suk Hyeong, Kim Kong Su, KR100217205. Manufacturing process of plaster to disinfect wound.
  • 26. In, Takeo, Hashimoto Kunihiko, Morimoto Kan. JP2005152070. Wound covering adhesive plaster.
  • 27. Kim Hak Yong, Park Jong Cheol, Go Gun Ho, Kim Keun Pyo, Ryu Young Joon, Park Jong Hoon. KR1020050104704. Method for manufacturing lamination type textile having nanometer fiber layers by heat treatment instead of additional laminating.
  • 28. Cho Suk Hyeong. KR1020060034871. Preparation of dressing for medical treatment of wound, particularly related to chitozan based dressing for preventing adhesion of wound part to adjacent tissue Chile repairing the wound.
  • 29. Mccarthy S, Kenton WG. CA2450668. Wound dressing and method for controlling severe, life-threatening bleeding.
  • 30. Kershaw D, Mahoney PMJ, Henmer P, Pritchard D. NZ332112. Wound dressing incorporating absorbent fibres comprising calcium alginate and cellulose.
  • 31. Da Róz AL, Leite FL, Pereiro LV, Nascente PAP, Zucolotto V, Oliveira Jr. ON, Carvalho AJF. Adsorption of chitosan on spin-coated cellulose films. Carbohydrate Polymers 2010; 80: 65–70.
  • 32. Gillison JT. GB619165. An improved surgical material.
  • 33. Wrześniewska-Tosik K, Kucharska M, Wawro D. Fibrous Keratin-Containing Composite. Fibres & Textiles in Eastern Europe 2008; 16, 6(71): 113–116.
  • 34. Wrześniewska-Tosik K, Marcinkowska M, Niekraszewicz A, Anna Potocka D, Mik T, Pałczyńska M. Fibrous Composite Based on Keratin from Chicken Feathers. Fibres & Textiles in Eastern Europe 2011, 19, 6(89): 118–123.
  • 35. PN-EN ISO 3451-1:2010. Resins-Determination of ash-Part 1. General methods.
  • 36. ISO 17 812:2007. Paper, board and pulps. Determination of total magnesium, calcium, manganese, iron, copper.
  • 37. Tappi T266 om-94. Determination of sodium, calcium cooper, iron and manganese in pulp and paper by atomic absorption spectroscopy.
  • 38. Struszczyk MH. Chitin and Chitosan. Part I. Properties and Production. Polimery 2002; 47, 5: 316.
  • 39. Muzzarelli RAA, Rocchetti R. The determination of the degree of acetylation of chitosan by first derivative ultraviolet spectrophotometry. Carbohydrate Polymers 1985; 5: 461-472.
  • 40. Tan SC, Khor E, Tan TK, Wong SM. The degree of deacetylation of chitosan: Advocating the first derivative UV spectrophotometry method of determination. Talanta 1998; 45: 713–719.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5f61d45-4647-40bd-b6f4-7f9c437f59a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.