PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Agro-Industrial Waste Upgrading via Torrefaction Process – A Case Study on Sugarcane Bagasse and Palm Kernel Shell in Thailand

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research, the upgrading of agro-industrial wastes was investigated by using the torrefaction pretreatment technique. Two types of biomass waste, including sugarcane bagasse (SBG) and palm kernel shell (PKS), were used as raw materials. The operating conditions, i.e., torrefaction temperature and residence time, are between 225–300 °C and 30–90 minutes. The findings show that, in terms of mass yield and calorific value of the solid product, the torrefaction temperature is a more sensitive parameter than the residence time. By increasing the torrefaction temperature from 225 to 300 °C, the mass yields are dropped in the range of 28.79–31.57 wt.% and 28.00–29.88 wt.%, while the effect of holding time exhibits the mass yield decreasing only 3.12–5.90 wt.% and 1.53–3.41 wt.%, for SBG and PKS torrefaction, respectively. In terms of calorific value, higher heating values increase as torrefaction severity increases, varying in the range of 0.29–2.84 MJ/kg, with torrefaction temperature as the dominant factor. Regarding the calorific value, energy yield, energy gain, and energy-mass co-benefit index, the optimal operating conditions for SBG and PKS torrefactions are the same condition as 275 °C for 90 minutes. SBG and PKS bio-coals obtained from torrefaction are promising solid fuels with high calorific value (about 23 MJ/kg), with an energy yield of 73.93–77.41%, relative to coal that could be further utilized for co-firing in thermal power plants.
Rocznik
Strony
64--75
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Faculty of Science Energy and Environment, King Mongkut’s University of Technology North Bangkok (Rayong Campus), Rayong, 21120, Thailand
  • Faculty of Science Energy and Environment, King Mongkut’s University of Technology North Bangkok (Rayong Campus), Rayong, 21120, Thailand
  • Faculty of Science Energy and Environment, King Mongkut’s University of Technology North Bangkok (Rayong Campus), Rayong, 21120, Thailand
Bibliografia
  • 1. Ahmad R., Ishak M.A.M., Kasim N.N., Ismail K. 2019. Properties and thermal analysis of upgraded palm kernel shell and Mukah Balingian coal. Energy, 167, 538–547.
  • 2. Arpia A.A., Chen W.H., Ubando A.T., Tabatabaei M., Lam S.S., Culaba A.B., De Luna M.D.G. 2021. Catalytic microwave-assisted torrefaction of sugarcane bagasse with calcium oxide optimized via Taguchi approach: Product characterization and energy analysis. Fuel, 305, 121543.
  • 3. Asadullah M., Adi A.M., Suhada N., Malek N.H., Saringat M.I., Azdarpour A. 2014. Optimization of palm kernel shell torrefaction to produce energy densified bio-coal. Energy Conversion and Management, 88, 1086–1093.
  • 4. Aslam U., Ramzan N., Aslam Z., Iqbal T., Sharif S., Hasan S.W.U., Malik A. 2019. Enhancement of fuel characteristics of rice husk via torrefaction process. Waste Management and Research, 37(7), 737–745.
  • 5. Basu P. 2013. Biomass gasification, pyrolysis, and torrefaction: Practical design and theory. Academic Press, Elsevier Inc.
  • 6. Cardona S., Gallego L.J., Valencia V., Martínez E., Rios L.A. 2019. Torrefaction of eucalyptus-tree residues: A new method for energy and mass balances of the process with the best torrefaction conditions. Sustainable Energy Technologies and Assessments, 31, 17–24.
  • 7. Chen W.H., Ye S.C., Sheen H.K. 2012. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresource technology, 118, 195–203.
  • 8. Chen W.H., Liu S.H., Juang T.T., Tsai C.M., Zhuang Y.Q. 2015. Characterization of solid and liquid products from bamboo torrefaction. Applied Energy, 160, 829–835.
  • 9. Chen W.H., Lin B.J., Lin Y.Y., Chu Y.S., Ubando A.T., Show P.L., Ong H.C., Chang J.S., Ho S.H., Culaba A.B., Pétrissans, A., Pétrissans, M. 2021. Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science, 82, 100887.
  • 10. Dai L., Wang Y., Liu Y., Ruan R., He C., Yu Z., Jiang L., Zeng Z., Tian X. 2019. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 107, 20–36.
  • 11. Devaraja U.M.A., Senadheera S.S., Gunarathne D.S. 2022. Torrefaction severity and performance of Rubberwood and Gliricidia. Renewable Energy, 195, 1341–1353.
  • 12. Du S.W., Chen W.H., Lucas J.A. 2014. Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection. Bioresource Technology, 161, 333–339.
  • 13. Dyjakon A., Noszczyk T., Smędzik M. 2019. The influence of torrefaction temperature on hydrophobic properties of waste biomass from food processing. Energies, 12(24), 4609.
  • 14. Dyjakon A., Noszczyk T. 2020. Alternative fuels from forestry biomass residue: Torrefaction process of horse chestnuts, oak acorns, and spruce cones. Energies, 13(10), 2468.
  • 15. Faizal H.M., Jusoh M.A.M., Rahman M.R.A., Syahrullail S., Latiff Z.A. 2016. Torrefaction of palm biomass briquettes at different temperature. Jurnal Teknologi, 78(9–2), 61–67.
  • 16. Granados D.A., Ruiz R.A., Vega L.Y., Chejne F. 2017. Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process. Energy, 139, 818–827.
  • 17. Ibitoye S.E., Jen T.C., Mahamood R.M., Akinlabi E.T. 2021. Improving the combustion properties of corncob biomass via torrefaction for solid fuel applications. Journal of Composites Science, 5(10), 260.
  • 18. Ikubanni P.P., Oki M., Adeleke A.A., Adediran A.A., Adesina O.S. 2020. Influence of temperature on the chemical compositions and microstructural changes of ash formed from palm kernel shell. Results in Engineering, 8, 100173.
  • 19. Inayat A., Inayat M., Shahbaz M., Sulaiman S.A., Raza M., Yusup S. 2020. Parametric analysis and optimization for the catalytic air gasification of palm kernel shell using coal bottom ash as catalyst. Renewable Energy, 145, 671–681.
  • 20. Jagodzińska K., Czerep M., Kudlek E., Wnukowski M., Yang W. 2019. Torrefaction of wheat-barley straw: Composition and toxicity of torrefaction condensates. Biomass and Bioenergy, 129, 105335.
  • 21. Kanwal S., Chaudhry N., Munir S., Sana H. 2019. Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse). Waste Management, 88, 280–290.
  • 22. Li Z., Yi W., Li Z., Tian C., Fu P., Zhang Y., Zhou L., Teng J. 2020. Preparation of solid fuel hydrochar over hydrothermal carbonization of red jujube branch. Energies, 13(2), 480.
  • 23. Lu K.M., Lee W.J., Chen W.H., Liu S.H., Lin T.C. 2012. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresource technology, 123, 98–105.
  • 24. Ma Z., Zhang Y., Shen Y., Wang J., Yang Y., Zhang W., Wang S. 2019. Oxygen migration characteristics during bamboo torrefaction process based on the properties of torrefied solid, gaseous, and liquid products. Biomass and Bioenergy, 128, 105300.
  • 25. Manatura, K. 2020. Inert torrefaction of sugarcane bagasse to improve its fuel properties. Case Studies in Thermal Engineering, 19, 100623.
  • 26. Manouchehrinejad M., Mani S. 2018. Torrefaction after pelletization (TAP): Analysis of torrefied pellet quality and co-products. Biomass and Bioenergy, 118, 93–104.
  • 27. Mayoral M.C., Izquierdo M.T., Andrés J.M., Rubio B. 2001. Different approaches to proximate analysis by thermogravimetry analysis. Thermochimica Acta, 370(1–2), 91–97.
  • 28. Niu Y., Lv Y., Lei Y., Liu S., Liang Y., Wang D., Hui S. 2019. Biomass torrefaction: properties, applications, challenges, and economy. Renewable and Sustainable Energy Reviews, 115, 109395.
  • 29. Park S., Kim S.J., Oh K.C., Cho L.H., Kim M.J., Jeong I.S., Lee C.G., Kim D.H. 2020. Characteristic analysis of torrefied pellets: Determining optimal torrefaction conditions for agri-byproduct. Energies, 13(2), 423.
  • 30. Putra H.E., Djaenudin D., Damanhuri E., Dewi K., Pasek A.D. 2021. Hydrothermal carbonization kinetics of lignocellulosic municipal solid waste. Journal of Ecological Engineering, 22(3), 188–198.
  • 31. Ren X., Sun R., Meng X., Vorobiev N., Schiemann M., Levendis Y.A. 2017. Carbon, sulfur and nitrogen oxide emissions from combustion of pulverized raw and torrefied biomass. Fuel, 188, 310–323.
  • 32. Rokni E., Ren X., Panahi A., Levendis, Y.A. 2018. Emissions of SO2, NOx, CO2, and HCl from Cofiring of coals with raw and torrefied biomass fuels. Fuel, 211, 363–374.
  • 33. Sabil, K.M., Aziz, M.A., Lal, B., Uemura, Y., 2013. Effects of torrefaction on the physiochemical properties of oil palm empty fruit bunches, mesocarp fiber and kernel shell. Biomass and Bioenergy, 56, 351–360.
  • 34. Strandberg M., Olofsson I., Pommer L., Wiklund-Lindström S., Åberg K., Nordin A. 2015. Effects of temperature and residence time on continuous torrefaction of spruce wood. Fuel Processing Technology, 134, 387–398.
  • 35. Sukiran M.A., Abnisa F., Daud W.M.A.W., Bakar N.A., Loh S.K. 2017. A review of torrefaction of oil palm solid wastes for biofuel production. Energy Conversion and Management, 149, 101–120.
  • 36. Sukiran M. A., Abnisa F., Syafiie S., Daud W.M.A.W., Nasrin A.B., Aziz A.A., Loh S.K. 2020. Experimental and modelling study of the torrefaction of empty fruit bunches as a potential fuel for palm oil mill boilers. Biomass and Bioenergy, 136, 105530.
  • 37. Tsai W.T., Jiang T.J., Tang M.S., Chang C.H., Kuo T.H. 2021. Enhancement of thermochemical properties on rice husk under a wide range of torrefaction conditions. Biomass Conversion and Biorefinery, 1–10.
  • 38. Tsai W.T., Jiang T.J., Lin Y.Q., Zhang X., Yeh K.S., Tsai C.H. 2021. Fuel properties of torrefied biomass from Sapindus pericarp extraction residue under a wide range of pyrolysis conditions. Energies, 14(21), 7122.
  • 39. Xu J., Huang M., Hu Z., Zhang W., Li Y., Yang Y., Shou Y, Shou S., Ma Z. 2021. Prediction and modeling of the basic properties of biomass after torrefaction pretreatment. Journal of Analytical and Applied Pyrolysis, 159, 105287.
  • 40. Yang H., Yan R., Chen H., Lee D.H., Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788.
  • 41. Yanik J., Duman G., Karlström O., Brink A. 2018. NO and SO2 emissions from combustion of raw and torrefied biomasses and their blends with lignite. Journal of Environmental Management, 227, 155–161.
  • 42. Zhang C., Ho S.H., Chen W.H., Fu Y., Chang J.S., Bi X. 2019. Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage. Applied Energy, 235, 428–441.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5f61433-f35e-46ac-879f-f51fa83cfdeb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.