Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A wave equation in a bounded and smooth domain of ℝn with a delay term in the nonlinear boundary feedback is considered. Under suitable assumptions, global existence and uniform decay rates for the solutions are established. The proof of existence of solutions relies on a construction of suitable approximating problems for which the existence of the unique solution will be established using nonlinear semigroup theory and then passage to the limit gives the existence of solutions to the original problem. The uniform decay rates for the solutions are obtained by proving certain integral inequalities for the energy function and by establishing a comparison theorem which relates the asymptotic behavior of the energy and of the solutions to an appropriate dissipative ordinary differential equation.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
35--55
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- LTM, University of Batna 2, Batna 05078, Algeria
autor
- LTM, University of Batna 2, Batna 05078, Algeria
autor
- LTM, University of Batna 2, Batna 05078, Algeria,
Bibliografia
- [1] K. Ammari and S. Gerbi, Interior feedback stabilization of wave equations with dynamic boundary delay, Z. Anal. Anwend. 36 (2017), no. 3, 297-327.
- [2] V. I. Arnol’d, Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math. 60, Springer, New York, 1989.
- [3] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leiden, 1976.
- [4] V. Barros, C. Nonato and C. Raposo, Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights, Electron. Res. Arch. 28 (2020), no. 1, 205-220.
- [5] A. Benaissa, A. Benaissa and S. A. Messaoudi, Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks, J. Math. Phys. 53 (2012), no. 12, Article ID 123514.
- [6] M. M. Cavalcanti, V. N. Domingos Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping—source interaction, J. Differential Equations 236 (2007), no. 2, 407-459.
- [7] A. Choucha, D. Ouchenane and S. Boulaaras, Well posedness and stability result for a thermoelastic laminated Timoshenko beam with distributed delay term, Math. Methods Appl. Sci. 43 (2020), no. 17, 9983-10004.
- [8] R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim. 26 (1988), no. 3, 697-713.
- [9] R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim. 24 (1986), no. 1, 152-156.
- [10] B. Feng, Well-posedness and exponential decay for laminated Timoshenko beams with time delays and boundary feedbacks, Math. Methods Appl. Sci. 41 (2018), no. 3, 1162-1174.
- [11] W. Ghecham, S.-E. Rebiai and F. Z. Sidiali, Uniform boundary stabilization of the wave equation with a nonlinear delay term in the boundary conditions, in: Analysis, Probability, Applications, and Computation, Trends Math., Birkhäuser, Cham (2019), 561-568.
- [12] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Res. Appl. Math., Masson, Paris, 1994.
- [13] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential Integral Equations 6 (1993), no. 3, 507-533.
- [14] I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim. 25 (1992), no. 2, 189-224.
- [15] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. II, Encyclopedia Math. Appl. 74, Cambridge University Press, Cambridge, 2000.
- [16] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1: Contrôlabilité exacte, Rech. Math. Appl. 8, Masson, Paris, 1988.
- [17] S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim. 45 (2006), no. 5, 1561-1585.
- [18] C. A. Raposo, T. A. Apalara and J. O. Ribeiro, Analyticity to transmission problem with delay in porous-elasticity, J. Math. Anal. Appl. 466 (2018), no. 1, 819-834.
- [19] C. A. Raposo, H. Nguyen, J. O. Ribeiro and V. Barros, Well-posedness and exponential stability for a wave equation with nonlocal time-delay condition, Electron. J. Differential Equations 2017 (2017), Paper No. 279.
- [20] H. K. Wang and G. Chen, Asymptotic behavior of solutions of the one-dimensional wave equation with a nonlinear boundary stabilizer, SIAM J. Control Optim. 27 (1989), no. 4, 758-775.
- [21] Y. Xie and G. Xu, Exponential stability of 1-d wave equation with the boundary time delay based on the interior control, Discrete Contin. Dyn. Syst. Ser. S 10 (2017), no. 3, 557-579.
- [22] G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var. 12 (2006), no. 4, 770-785.
- [23] X. Yang, J. Zhang and Y. Lu, Dynamics of the nonlinear Timoshenko system with variable delay, Appl. Math. Optim. (2018), DOI s00245-018-9539-0.
- [24] E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim. 28 (1990), no. 2, 466-477.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5f34e66-8349-49be-ba73-569dd373cb17