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Inductive Coupling of the Electrical Systems
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Summary: This papers deals with the computer analysis of the inductive coupling of the electroma-
gnetic compatibility (EMC) problem focused at the area of power electronics and electrical drives
and tests performed by the numerical computer simulation, which can also disclose the startling
facts concerning the electromagnetic compatibility (EMC) problems.

1. INTRODUCTION

The importance of the electromagnetic compatibility
(EMC) of all electrical products is rapidly increasing during
the last decade. The environment is increasingly polluted
with electromagnetic energy. The interference output into
the surroundings, is doubled every three years, and covers a
large frequency range.

The possibility of the disturbances of equipments and
errors becomes more serious as the consequence of the
growth of the electronic circuit complexity. According to
the new technical legislation and also due to economic
consequences the EMC concept of all products must be
strictly observed. [t must start with the specification of
the equipment performance and end with the equipment
installation procedures.

2. EMC AND ENVIRONMENTAL WASTE

We all know the problems of environmental pollution
caused by solid, liquid and gaseous wastes. We are aware of
most of these pollutants through our senses. Due to increasing
life standard, the contamination of our environment with
the electromagnetic energy is constantly increasing too.
Since human beings have no organs of perception for such
contamination, they cannot perceive it. The “great sufferers”,
producing such waste, are the electronic systems developed
by man and meant to be effective within these electromagnetic
surroundings, producing of course, electromagnetic waste
in turn. On one side, interferences are deliberately or
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involuntarily produced. The place of their origin is called
interference source. One the other side, devices may be
hindered in their function by such interferences. Those
objects are called interference objects.

The possible interfaces between sources and objects are
shown in Figure 1. The four basic types of coupling ways
can realize these interfaces.

3. EMC - THE INTERFERENCE MECHANISM

The interference mechanism can be described in a simplified
form as follows. The interference source can be for instance,
the power semiconductor converter or motor. Interference is
produced in interference source, which gets into electronics
in undesirable ways, and due to various effects distorts the
signals. The transmission can be direct, for example by galvanic
coupling between interference source and interference sink. The
interference can be spread through air or via ducts, or coupled
inductively or capacitively into signal lines.

The development of power semiconductor parts has
caused vehement evolution of the power electronics branch
in the last ten years. For the investigation of the converter
functionality it was necessary first theoretically analyze
and then practically verify the assumed activity of the
converter. Now, we can eliminate the laborious theoretical
analysis by numerical computer simulation, which can also
disclose the startling facts concerning of the electromagnetic
compatibility (EMC) problems.

4. INDUCTIVE COUPLING

The inductive coupling is typical for two and more
galvanically separated electrical loops at the moment when
minimum one of them is flowing by a time variable current,
which is creating the corresponding time variable magnetic
field. In such case the mutual intercircuit influence is given
as the dependence on the slope of the current increases or
decreases, the circuit’s environment magnetic property and
as well as the circuit’s geometrical dimensions.

For the predictive investigation of the intercircuit
inductive coupling we will focus our interest on the case of
the two electrical loops /; and /, with the currents i; a i, and
we will try to state the influence of the loop /; on loop 7, as
it is shown in Figure 2.
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Fig. 2. The investigated loops

According to Maxwell’s equation for a quasi-stationary
magnetic field:
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and after the application of the Stoke’s theorem, we can obtain
the equation for the induced voltage:
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Where M is the coefficient of the mutual inductance. For the
magnetic flux W, definition the equation:
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is valid where 4, is the vector of the magnetic field potential
created by the current i;. We can calculate the value of this
vector by the following equation:

/

After the substitution of the last equation to the equation valid
for the magnetic flux ¢; we can receive the next relation:
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Fig. 3. The geometrical dimensions of the investigated loops
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For the practical use, it is more advantageous to express
the induced voltage in the form of a differential:
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If we know the geometrical dimensions of the investigated
loops - Figure 3. and we want to state their mutual inductive
coupling then we can use the next relation (9) for the induced
voltage, which is based on the 3D Cartesian coordinate
system.

For the global solution of the inductive coupling part of
the Electromagnetic Compatibility (EMC) problem inside
the total electrical system, it is necessary to do the global
circuit analyze, respecting the mutual intercircuit inductance
couplings. It results into the following integral-differential
system of equations 9 (see on the bottom of page).
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For this purpose it is very suitable to explore the existing
simulation programs such as for instance the PSPICE
program utilized worldwide.

In the next part, we will try to state the influence of the
one quadrant impulse converter, to the sensing circuit as it is
shown in Figure 4. The circuit dimensions are a=0,2m, b=

i 0.3m, ¢=0,1 m, d=0,05m, e=0,005 m. The copper wires,
_ di i"z o (An —Ay). By, By )+A, —A,).B,, B, )+HA, *A, )-B.,,-B,)
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Fig. 4. The investigated circuits

have the radius R = 0,0006 m and the relative permitivity of
the circuits environment is g, = 0,991.
The inductance of the first loop is given as:
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Fig. 6. The simulation results
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mentioned equation, is M=477,4 nH. The magnetic coupling
coefficient & is given as:
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’Ll +L, Fig. 7. The measured voltage ux and current i
Now we can use the PSPICE simulation program for
solving the inductive coupling problem between the both
circuits. The parameters of the circuit simulation are Ry = Uspi
11,66 Q, Ly =400 pH, R = 10 Q, R5 =100 Q and U = 0 : ]
70V. The schematic connection is shown in Figure 5. The - ! :U‘
+Vip3
5v/id Ui T
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i Fig. 8. The measured voltage -»; and current
Figure 5. The simulation circuit
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Fig. 9. The switching on detail of the voltage ¢y and current ip

IGBT transistor Q was switching with the frequency 10 kHz
and switch on/off ratio equals to 0,5. The results obtained by
the simulation are shown in Figure 6.

The results obtained by the measurement are shown in
Figure 7 and Figure 8, the switching details in Figure 9 and
Figure 10.

Comparing the simulated and measured results we can
see, that the peaks of the transistor current /. have the same
values of 8,4 A in the both cases. The equal values of 4,4 A
have both the simulated and measured transistor current at the
moment, when transistor is switched of. A small difference
exists only between the simulated and measured curves of
the transistor voltage u. The overvoltage generated at the
moment, when the transistor is switched, reaches the value
of 150 V, in the case of the simulated result. However the
corresponding overvoltage has only the value of 130 V, in
the case of the measured result. The peaks of simulated and
measured induced voltages have the same values of U;; =
-2,2V, U;> = 5,02V, U;; = 2,1V. It means, that such method
of analysis should be accepted, for the inductive coupling
investigation of the EMC problem.

To improve the obtained results, the numerical solution of
the magnetic field by finite element method program was also
used. The result of such analysis is shown in Figure 11.

From the “Integral result” data window, it is possible to
state, that the value of the magnetic flux inside the sensing
circuit is 3,317.10- Wb. Based on the basic program’s
property, allowing semi-real 3D space simulation with the
3td dimension equal only to the basic unit of the depth (where
the basic unit of the depth is Imm) we have to multiply the
obtained value of the magnetic flux by the value of the sensing
circuit’s depth ¢ = 100 mm. The total magnetic flux is then
331,7.10-° Wb. This flux was excited by the peak circuit
current 8,4 A, the rising time of which was 120 ns. On the
basis of the above mentioned equations, the first peak of the
induced voltage we can calculate as:
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Fig. 10. The switching off detail of the voltage ucp and current i

Fig. 11. The finite element simulation method of the magnetic field

Similarly, it is possible to calculate the rest of the peaks
of the induced voltage u;:

AO, 331,7.10°-553.10"° _ 276,4.10°
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7 An 551077 55.107°
(16)
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ip3 — At — 9 = T
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The results obtained by the finite element numerical
simulation method are again confirming the correctness of
the above mentioned methods.

5. CONCLUSION

The performed analyses indicate, that the fast power field
effect transistor switching can produce the induced voltage
with the place value of some volts up to some tenths’ of volts
in the nearby circuits. It is also evident, that the magnitude
of the induced voltage depends on the magnetic flux’s slope.
It means, that the fast switching of the small currents, can
generate large peaks of the induced voltage, too.
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