PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear resonance of axially moving graphene platelet-reinforced metal foam cylindrical shells with geometric imperfection

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work pays attention to the primary resonance of axially moving graphene-reinforced mental foam (GPLRMF) cylindrical shells with geometric imperfection. Porosities and graphene platelets (GPLs) are uniformly or non-uniformly distributed along the thickness direction of the cylindrical shell. Considering the influences of initial geometric imperfection and axial velocity, the equivalent elastic modulus is calculated by Halpin-Tsai model, and the equivalent density and Poisson’s ratio are described by the mixture rule. Using the energy principle, the nonlinear equations of motion are derived. Considering two different boundary conditions, the nonlinear primary resonance response is obtained using the modified Lindstedt Poincare (MLP) method. The results indicate that the MLP method can effectively overcome the limitation of traditional perturbation method. In the end, we study the effects of the GPLs distribution patterns, GPLs weight fraction, the porosity coefficient, axial velocity, initial geometric imperfection, and the prestressing force on the resonance problems. It can be found that the presence of initial geometric imperfection can alter the frequency response curve from the characteristics of the hard spring to the soft spring.
Rocznik
Strony
art. no. e97, 2023
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr.
Twórcy
  • College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
autor
  • College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
Bibliografia
  • 1. Wang YQ, Zu JW. Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerosp Sci Technol. 2017;69:550-62.
  • 2. Yang FL, Wang YQ, Liu YF. Low-velocity impact response of axially moving functionally graded graphene platelet reinforced metal foam plates. Aerosp Sci Technol. 2022;123: 107496.
  • 3. Ghayesh MH, Amabili M, Paidoussis MP. Nonlinear dynamics of axially moving plates. J Sound Vib. 2013;332:391-406.
  • 4. Yang XD, Chen LQ, Zu JW. Vibrations and stability of an axially moving rectangular composite plate. J Appl Mech-T Asme. 2011;78: 011018.
  • 5. Yang XD, Zhang W, Yao MH. Dynamical analysis of axially moving plate by finite difference method. Nonlinear Dynam. 2012;67:997-1006.
  • 6. Arani AG, Haghparast E. Vibration analysis of axially moving carbon nanotube-reinforced composite plate under initial tension. Poly Compos. 2017;38:814-22.
  • 7. Zhou YF, Wang ZM. Dynamic instability of axially moving viscoelastic plate. Eur J Mech A-Solids. 2019;73:1-10.
  • 8. Chen LQ, Ding H. Steady-state transverse response in coupled planar vibration of axially moving viscoelastic beams. J Vib Acoust. 2010;132: 011018.
  • 9. Ding H, Zhang GC, Chen LQ, Yang SP. Forced vibrations of supercritically transporting viscoelastic beams. J Vib Acoust. 2012;134: 051007.
  • 10. Zhang W, Sun L, Yang X, Jia P. Nonlinear dynamic behaviors of a deploying and-retreating wing with varying velocity. J Sound Vib. 2013;332:6785-97.
  • 11. Farokhi H, Ghayesh MH. Nonlinear motion characteristics of microarches under axial loads based on modified couple stress theory. Archiv Civil Mech Eng. 2015;15(2):401-11.
  • 12. Abolhassanpour H, Ghasemi FA, Mohamadi A. Stability and vibration analysis of an axially moving thin walled conical shell. J Vib Control. 2021;28(13–14):1655-72.
  • 13. Mohamadi A, Shahgholi M, Ghasemi FA. Nonlinear vibration of axially moving simply-supported circular cylindrical shell. Thin Wall Struct. 2020;156: 107026.
  • 14. Wang YQ, Liang L, Guo XH. Internal resonance of axially moving laminated circular cylindrical shells. J Sound Vib. 2013;332:6434-50.
  • 15. Liu H, Wi H, Lyu Z. Nonlinear resonance of FG multilayer beam-type nanocomposites: effects of graphene nanoplatelet-reinforcement and geometric imperfection. Aerosp Sci Technol. 2020;98: 105702.
  • 16. Lin BC, Zhu B, Chen B, Han J, Li YH. Nonlinear primary resonance behaviors of rotating FG-CNTRC beams with geometric imperfections. Aerosp Sci Technol. 2022;121: 107333.
  • 17. Feng X, Fan XY, Li Y, Zhang H, Zhang LL, Gao Y. Static response and free vibration analysis for cubic quasicrystal laminates with imperfect interfaces. Eur J Mech A-Solid. 2021;90: 104365.
  • 18. Li ZM, Liu T. A new displacement model for nonlinear vibration analysis of fluid-conveying anisotropic laminated tubular beams resting on elastic foundation. Eur J Mech A-Solid. 2021;86: 104172.
  • 19. Gu XJ, Hao YX, Chen J. Dynamic stability of rotating cantilever composite thin walled twisted plate with initial geometric imperfection under in-plane load. Thin Wall Struct. 2019;144: 106267.
  • 20. Gu XJ, Hao YX, Chen J. Free vibration of rotating cantilever pre-twisted panel with initial exponential function type geometric imperfection. Appl Math Model. 2019;68:327-52.
  • 21. Liu L, Li JM, Kardomateas GA. Nonlinear vibration of a composite plate to harmonic excitation with initial geometric imperfection in thermal environments. Compos Struct. 2019;209:401-23.
  • 22. Thang PT, Thoi TN, Lee J. Closed-form solution for nonlinear buckling analysis of FG-CNTRC cylindrical shells with initial geometric imperfections. Eur J Mech A-Solid. 2019;73:483-91.
  • 23. Gholami R, Ansari R. The effect of initial geometric imperfection on the nonlinear resonance of functionally graded carbon nanotube-reinforced composite rectangular plates. Appl Math Mech Engl. 2018;39:1219-38.
  • 24. Tomarn SS, Talha M. Thermo-mechanical buckling analysis of functionally graded skew laminated plates with initial geometric imperfections. Int J Appl Mech. 2018;10:1850014.
  • 25. Li W, Hao YX, Zhang W, Yang H. Resonance response of clamped functionally graded cylindrical shells with initial imperfection in thermal environments. Compos Struct. 2020;259: 113245.
  • 26. Rodrigues L, Silva FMA, Goncalves PB. Influence of initial geometric imperfections on the 1:1:1:1 internal resonances and nonlinear vibrations of thin-walled cylindrical shells. Thin Wall Struct. 2020;151: 106730.
  • 27. Salehi M, Gholami R, Ansari R. Nonlinear resonance of functionally graded porous circular cylindrical shells reinforced by graphene platelet with initial imperfections using higher-order shear deformation theory. Int J Struct Stab Dyn. 2022;22(06):2250075.
  • 28. Sahmani S, Aghdam MM. Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments. Archiv Civil Mech Eng. 2017;17(3):623-38.
  • 29. Yas MH, Rahimi S. Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using Generalized differential quadrature method. Aerosp Sci Technol. 2020;107: 106261.
  • 30. Qian Q, Wang Y, Zhu F, Feng C, Yang J, Wang SG. Primary nonlinear damped natural frequency of dielectric composite beam reinforced with graphene platelets (GPLs). Archiv Civil Mech Eng. 2022;22:53.
  • 31. Song J, Karami B, Shahsavari D, Civalek O. Wave dispersion characteristics of graphene reinforced nanocomposite curved viscoelastic panels. Compos Struct. 2021;277: 114648.
  • 32. Demir C, Akgoz B, Erdinc MC, Mercan K, Civalek O. Free vibration analysis of graphene sheets on elastic matrix. J Fac Eng Archit Gaz. 2017;32(2):551-62.
  • 33. Akgoz B, Civalek O. Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater Design. 2021;42:164-71.
  • 34. Akgoz B, Civalek O. Static and dynamic response of sector-shaped graphene sheets. Mech Adv Mater Struct. 2016;23(4):432-42.
  • 35. She GL, Liu HB, Karami B. On resonance behavior of porous FG curved nanobeams. Steel Compos Struct. 2020;36(2):179-86.
  • 36. She GL, Liu HB, Karami B. Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets. Thin Wall Struct. 2021;160: 107407.
  • 37. Ding HX, Zhang YW, She GL. On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations. Comput Concrete. 2022;30(6):433-43.
  • 38. Zhang YW, Ding HX, She GL. Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment. J Therm Stresses. 2022;45(12):1029-42.
  • 39. Zhang YW, She GL. Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection. Nonlinear Dyn. 2023. https://doi.org/10.1007/s11071-022-08186-9.
  • 40. She GL, Ding HX. Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection. Acta Mech Sin. 2023;39: 522392.
  • 41. Basha M, Daikh AA, Melaibari A, Wagih A, Othman R, Almitani KH, Hamed MA, Abdelrahman A, Eltaher MA. Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates. Steel Compos Struct. 2022;43(5):639-60.
  • 42. Ghandourah EE, Daikh AA, Alhawsawi AM, Fallatah OA, Eltaher MA. Bending and buckling of FG-GRNC laminated plates via quasi-3D nonlocal strain gradient theory. Mathematics. 2022;10(8):1321.
  • 43. Karami B, Shahsavari D, Janghorban M, Tounsi A. Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Int J Mech Sci. 2019;156:94-105.
  • 44. Al-Furjan MSH, Habibi M, Ghabussi A, Safarpour H, Safarpour M, Tounsi A. Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory. Eng Struct. 2021;228: 111496.
  • 45. Al-Furjan MSH, Safarpour H, Habibi M, Safarpour M, Tounsi A. A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Eng Comput. 2022;38:801-18.
  • 46. Gao WL, Qin ZY, Chu FL. Wave propagation in functionally graded porous plates reinforced with graphene platelets. Aerosp Sci Technol. 2020;102: 105860.
  • 47. Wang YQ, Ye C, Zu JW. Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp Sci Technol. 2019;85:359-70.
  • 48. Ye C, Wang YQ. Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances. Nonlinear Dynam. 2021;104:2051-69.
  • 49. Li XQ, Song MT, Kitipornchai S. Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams. Nonlinear Dynam. 2019;95:1807-26.
  • 50. Zhou ZH, Ni YW, Xu XS. Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells. Int J Mech Sci. 2019;151:537-50.
  • 51. Li ZC, Zheng JX. Analytical consideration and numerical verification of the confined functionally graded porous ring with graphene platelet reinforcement. Int J Mech Sci. 2019;161: 105079.
  • 52. Zhang YW, She GL, Ding HX. Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections. Eur J Mech A-Solid. 2023;98: 104887.
  • 53. Jabbari M, Mojahedin A, Khorshidvand A, Eslami M. Buckling analysis of a functionally graded thin circular plate made of saturated porous materials. J Eng Mech. 2014;140:287-95.
  • 54. Arefi M, Civalek O. Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory. Archiv Civ Mech Eng. 2020;20:22.
  • 55. Affdl JH, Kardos J. The Halpin-Tsai equations: a review. Polym Eng Sci. 1976;16:344-52.
  • 56. Li QY, Wu D, Gao W. Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation. Int J Mech Sci. 2018;148:596-610.
  • 57. Song MT, Li XQ, Yang J. Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates. Nonlinear Dynam. 2019;95:2333-52.
  • 58. Gibson I, Ashby MF. The mechanics of three-dimensional cellular materials. Proc R Soc Lond Ser A Math Phys Sci. 1982;382:43-59.
  • 59. Arefi M, Mannani S, Collini L. Electro-magneto-mechanical formulation of a sandwich shell subjected to electro-magneto-mechanical considering thickness stretching. Archiv Civ Mech Eng. 2022;22:196.
  • 60. Eskandary K, Shishesaz M, Moradi S. Buckling analysis of composite conical shells reinforced by agglomerated functionally graded carbon nanotube. Archiv Civ Mech Eng. 2022;22:132.
  • 61. Faleh NM, Ahmed RA, Fenjan RM. On vibrations of porous FG nanoshells. Int J Eng Sci. 2018;133:1-14.
  • 62. Chen SH, Cheung YK. A modified Lindstedt-Poincare method for a strongly nonlinear system with quadratic and cubic nonlinearities. Shock Vib. 1996;3:279-85.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5ebd438-85c1-47a0-8c7b-74221a1caf2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.