Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The global (absolute) stability of nonlinear systems with fractional positive and not necessarily asymptotically stable linear parts and feedbacks is addressed. The characteristics u = f(e) of the nonlinear parts satisfy the condition k1e ≤ f(e) ≤ k2e for some positive k1 and k2. It is shown that the fractional nonlinear systems are globally asymptotically stable if the Nyquist plots of the fractional positive linear parts are located on the right-hand side of the circles (−1/k1,−1/k2).
Rocznik
Tom
Strony
493--499
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Faculty of Electrical Engineering, Białystok University of Technology, Wiejska 45D, 15-351 Białystok, Poland
Bibliografia
- [1] Berman A. and Plemmons R.J. (1994). Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, MA.
- [2] Borawski K. (2017). Modification of the stability and positivity of standard and descriptor linear electrical circuits by state feedbacks, Electrical Review 93(11): 176–180.
- [3] Busłowicz M. and Kaczorek T. (2009). Simple conditions for practical stability of positive fractional discrete-time linear systems, International Journal of Applied and Mathematics and Computer Science 19(2): 263–269, DOI: 10.2478/v10006-009-0022-6.
- [4] Farina L. and Rinaldi S. (2000). Positive Linear Systems: Theory and Applications, Wiley, New York, NY.
- [5] Kaczorek T. (2019a). Absolute stability of a class of fractional positive nonlinear systems, International Journal of Applied Mathematics and Computer Science 29(1): 93–98, DOI: 10.2478/amcs-2019-0007.
- [6] Kaczorek T. (2019b). Global stability of nonlinear feedback systems with positive linear parts, International Journal of Nonlinear Sciences and Numerical Simulation 20(5): 575–579, DOI: 10.1515/ijnsns-2018-0189.
- [7] Kaczorek T. (2017). Superstabilization of positive linear electrical circuit by state-feedbacks, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(5): 703–708.
- [8] Kaczorek T. (2016). Analysis of positivity and stability of fractional discrete-time nonlinear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 64(3): 491–494.
- [9] Kaczorek T. (2015a). Analysis of positivity and stability of discrete-time and continuous-time nonlinear systems, Computational Problems of Electrical Engineering 5(1): 11–16.
- [10] Kaczorek T. (2015b). Stability of fractional positive nonlinear systems, Archives of Control Sciences 25(4): 491–496.
- [11] Kaczorek T. (2012). Positive fractional continuous-time linear systems with singular pencils, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(1): 9–12.
- [12] Kaczorek T. (2011a). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(7): 1203–1210.
- [13] Kaczorek T. (2011b). Selected Problems of Fractional Systems Theory, Springer, Berlin.
- [14] Kaczorek T. (2010). Positive linear systems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(3): 453–458.
- [15] Kaczorek T. (2002). Positive 1D and 2D Systems, Springer, London.
- [16] Kaczorek T. and Borawski K. (2017). Stability of positive nonlinear systems, 22nd International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 564–569, DOI: 10.1109/MMAR.2017.8046890.
- [17] Kaczorek T. and Rogowski K. (2015). Fractional Linear Systems and Electrical Circuits, Springer, Cham.
- [18] Kudrewicz J. (1964). Stability of nonlinear systems with feedback, Avtomatika i Telemechanika 25(8): 821–837, (in Russian).
- [19] Lyapunov A.M. (1963). The General Problem of Motion Stability, Gostechizdat, Moscow, (in Russian).
- [20] Leipholz H. (1970). Stability Theory, Academic Press, New York, NY.
- [21] Mitkowski W. (2008). Dynamical properties of Metzler systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 309–312.
- [22] Ostalczyk P. (2016). Discrete Fractional Calculus, World Scientific, River Edge, NJ.
- [23] Podlubny I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
- [24] Ruszewski A. (2019). Stability conditions for fractional discrete-time state-space systems with delays, 24th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 185–190, DOI: 10.1109/MMAR.2019.8864689.
- [25] Sajewski L. (2017a). Decentralized stabilization of descriptor fractional positive continuous-time linear systems with delays, 22nd International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, pp. 482-487.
- [26] Sajewski L. (2017b). Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller, Bulletin of the Polish Academy of Sciences: Technical Sciences 65(5): 709–714.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5e9a92b-145d-4c36-a244-3cbf7bdc9f41