PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of a static, homogeneous magnetic field on the sorption properties of soybean meal during maritime transport

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Providing safety and maintaining high quality of dry cargo, transported by sea, is associated with the necessity of taking into consideration their specific property, which is hygroscopicity. Susceptibility to the impact of water, which also occurs in vapour state, concerns mainly dry cargo, which are organic matter, containing carbohydrates and protein in their composition. This is because these substances have strong connection with water. The example of a bulk cargo often transported by sea is soybean meal, which is mainly produced in the USA, Brazil and Argentina. Due to its economic importance, the quality of soybean meal, which is globally used in the animal nutrition (poultry and swine), remains an important research issue. This product is obtained by subjecting the soybeans to cracking and dehulling processes, in order to facilitate the extraction of the oil. Water absorption of soybean meal causes reactions taking place in it, which leads to the changes in its chemical composition and, consequently, also in its nutritional values. Moreover, increasing the water content, leading to the increase of water activity, may significantly deteriorate the microbiological safety of the meal. Therefore, the research was undertaken to determine whether the sorption properties of soybean meal will change due to the influence of a static, homogeneous magnetic field. This aim has been achieved by determining and comparing the water vapour adsorption isotherms. The comparison of the isotherms determined under normal conditions and under the influence of a static, homogeneous magnetic field with an induction of 10 mT has been made on the basis of empirical data. Furthermore, using the Brunauer, Emett and Teller equation (BET), the monolayer and the energy constant of the sorption process have been estimated. The isotherms were determined at 20°C. The study lasted 9 days. Desiccators with aqueous supersaturated solutions of substances and a generator of a static magnetic field were used in the research. The obtained results have indicated that the influence of the magnetic field is a factor that causes the differentiation between the sorption properties of soybean meal expressed in the volume of the monolayer and the energy associated with the sorption phenomenon. The inferred findings show, that the magnetic field has an impact on the course of the sorption phenomenon in organic samples, and may determine the stability of the cargo during long-term maritime transport.
Twórcy
autor
  • Gdynia Maritime University, Gdynia, Poland
autor
  • Gdynia Maritime University, Gdynia, Poland
autor
  • Gdynia Maritime University, Gdynia, Poland
Bibliografia
  • 1. Ambashta, R.D., Sillanpää, M.: Water purification using magnetic assistance: A review. Journal of Hazardous Materials. 180, 1, 38–49 (2010). https://doi.org/10.1016/j.jhazmat.2010.04.105.
  • 2. Baker, J.S., Judd, S.J.: Magnetic amelioration of scale formation. Water Research. 30, 2, 247–260 (1996). https://doi.org/10.1016/0043-1354(95)00184-0.
  • 3. Blokus, A., Dziula, P.: Safety Analysis of Interdependent Critical Infrastructure Networks. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 13, 4, 781–787 (2019). https://doi.org/10.12716/1001.13.04.10.
  • 4. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 60, 2, 309–319 (1938). https://doi.org/10.1021/ja01269a023.
  • 5. Czerniawski, B., Michniewicz, J.: Opakowania żywności. Agro Food Technology, Czeladź (1998).
  • 6. Denicoff, M.R., Prater, M.E., Bahizi, P.: Soybean Transportation Profile. U.S. Department of Agriculture, Agricultural Marketing Service. (2014). https://doi.org/10.9752/TS203.10-2014.
  • 7. Drzewieniecka, B., Drzewieniecki, J., Blatnický, M.: The Influence of External Factors on Hazards in the Transport Processes of Soybean Meal. New Trends in Production Engineering. 1, 1, 301–307 (2018). https://doi.org/10.2478/ntpe-2018-0037.
  • 8. Dutkiewicz, E.T.: Fizykochemia powierzchni. WNT, Warszawa (1998).
  • 9. Fathi, A., Mohamed, T., Claude, G., Maurin, G., Mohamed, B.A.: Effect of a magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate. Water Research. 40, 10, 1941–1950 (2006). https://doi.org/10.1016/j.watres.2006.03.013.
  • 10. Fey, D.P., Greszkiewicz, M., Otremba, Z., Andrulewicz, E.: Effect of static magnetic field on the hatching success, growth, mortality, and yolk-sac absorption of larval Northern pike Esox lucius. Science of The Total Environment. 647, 1239–1244 (2019). https://doi.org/10.1016/j.scitotenv.2018.07.427.
  • 11. Figura, L., Teixeira, A.A.: Food Physics: Physical Properties - Measurement and Applications. Springer-Verlag, Berlin Heidelberg (2007). https://doi.org/10.1007/978-3-540-34194-9.
  • 12. Gondek, E., Lewicki, P.P.: Kinetics of Water Vapour Sorption by Selected Ingredients of Muesli-type Mixtures. Polish Journal of Food and Nutrition Sciences. 57, 3A, 23–26 (2007).
  • 13. Hartman, G.L., West, E.D., Herman, T.K.: Crops that feed the World 2. Soybean—worldwide production, use, and constraints caused by pathogens and pests. Food Security. 3, 1, 5–17 (2011). https://doi.org/10.1007/s12571-010-0108-x.
  • 14. Helpman, E.: The Mystery of Economic Growth. Belknap Press: An Imprint of Harvard University Press (2010).
  • 15. Helpman, E., Itskhoki, O., Redding, S.: Inequality and Unemployment in a Global Economy. Econometrica. 78, 4, 1239–1283 (2010). https://doi.org/10.3982/ECTA8640.
  • 16. Higashitani, K.: Effects of magnetic field on stability of non-magnetic colloidal particles. In: Proceedings of the 2nd International Meeting on Anti-Scale Magnetic Treatment. , Cranfield University, UK (1996).
  • 17. Huespe, V.J., Belardinelli, R.E., Pereyra, V.D., Manzi, S.J.: Comparison between different adsorption–desorption kinetics schemes in two dimensional lattice gas. Physica A: Statistical Mechanics and its Applications. 488, 162–176 (2017). https://doi.org/10.1016/j.physa.2017.06.028.
  • 18. Ji, Y., Wang, Y., Sun, J., Yan, T., Li, J., Zhao, T., Yin, X., Sun, C.: Enhancement of biological treatment of wastewater by magnetic field. Bioresource Technology. 101, 22, 8535–8540 (2010). https://doi.org/10.1016/j.biortech.2010.05.094.
  • 19. Karel, M., Lund, D.B.: Water Activity and Food Preservation. In: Karel, M. and Lund, D.B. (eds.) Physical Principles of Food Preservation. p. 53 CRC Press, New York (2003).
  • 20. Kędzierska-Matysek, M., Matwijczuk, A., Florek, M., Kornarzyński, K., Matwijczuk, A., Wolanciuk, A., Barłowska, J., Gładyszewska, B.: Wpływ pola magnetycznego na zawartość 5-hydroksymetylofurfuralu, aktywność diastazy oraz zmiany w widmach ATR-FTIR w świeżych miodach gryczanych. Przemysł Chemiczny. 97, 3, 381–386 (2018). https://doi.org/10.15199/62.2018.3.8.
  • 21. Lehuger, S., Gabrielle, B., Gagnaire, N.: Environmental impact of the substitution of imported soybean meal with locally-produced rapeseed meal in dairy cow feed. Journal of Cleaner Production. 17, 6, 616–624 (2009). https://doi.org/10.1016/j.jclepro.2008.10.005.
  • 22. Lewicki, P.P., Lenart, A., Placzek, A., Skrzeszewski, S.: Kinetyka sorpcji pary wodnej przez wybrane produkty spożywcze. Przemysl spożywczy. 41, 11, 428–432 (1977).
  • 23. Lusser, M., Parisi, C., Plan, D., Rodriguez Cerezo, E.: New plant breeding techniques : state-of-the-art and prospects. Publications Office, European Commission. Joint Research Centre. Institute for Prospective Technological Studies (2011).
  • 24. McFarlane, I., O’Connor, E.A.: World Soybean Trade: Growth and Sustainability. Modern Economy. 5, 5, 580–588 (2014). https://doi.org/10.4236/me.2014.55054.
  • 25. Mittal, A.: The 2008 Food Price Crisis: Rethinking Food Security Policies. United nations (2009).
  • 26. Mukherjee, R., Chakraborty, R., Dutta, A.: Soaking of soybean meal: evaluation of physicochemical properties and kinetic studies. Journal of Food Measurement and Characterization. 13, 1, 390–403 (2019). https://doi.org/10.1007/s11694-018-9954-6.
  • 27. Ocieczek, A.: Comparison of the sorption properties of milk powder with lactose and with-out lactose. Acta Agrophysica. 21, 4, 457–468 (2014).
  • 28. Ocieczek, A., Otremba, Z.: Effect of a magnetic field on water desorption from the surface of potato starch. Acta Agrophysica. 26, 3, 43–55 (2019). https://doi.org/10.31545/aagr/114987.
  • 29. Ocieczek, A., Otremba, Z.: The Influence of Magnetic Field on the Course of Surface Phenomena in the Food Quality Development. Presented at the X Międzynarodowa Konferencja Naukowa, Rola towaroznawstwa w zarządzaniu jakością w warunkach gospodarki opartej na wiedzy , Gdynia (2020).
  • 30. Ocieczek, A., Otremba, Z.: Water Vapor Sorption on the Surface of Selected Organic Samples in an Artificial Static Magnetic Field of 10 mT. International Journal of Technology. 11, 3, 291–319 (2020). https://doi.org/10.14716/ijtech.v11i3.3831.
  • 31. Pałacha, Z., Sitkiewicz, I.: Właściwości fizyczne żywności - Zbigniew Pałacha, Iwona Sitkiewicz WNT Wydawnictwa Naukowo-Techniczne - Podręczniki | Gandalf.com.pl. WNT, Warszawa (2010).
  • 32. Rahman, M.S.: Food Stability Beyond Water Activity and Glass Transtion: Macro-Micro Region Concept in the State Diagram. null. 12, 4, 726–740 (2009). https://doi.org/10.1080/10942910802628107.
  • 33. Rizvi, S.S.H.: Thermodynamic Properties of Foods in Dehydration. In: Rao, M.A. (ed.) Engineering Properties of Foods. p. 88 CRC Press (2005). https://doi.org/10.1201/9781420028805-11.
  • 34. Sandle, T.: The Importance of Water Activity for Risk Assessing Pharmaceutical Products. Journal of Pharmaceutical Microbiology. 2, 1, (2016).
  • 35. Schmidhuber, J., Tubiello, F.N.: Global food security under climate change. Proceedings of the National Academy of Sciences. 104, 50, 19703–19708 (2007). https://doi.org/10.1073/pnas.0701976104.
  • 36. Wang, Y., Pugh, R.J., Forssberg, E.: The influence of interparticle surface forces on the coagulation of weakly magnetic mineral ultrafines in a magnetic field. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 90, 2, 117–133 (1994). https://doi.org/10.1016/0927-7757(94)02908-3.
  • 37. Zawadzki, M.: Transport of Frozen Products as a Source of Environmental and Consumer Risks. Scientific Journal of Gdynia Maritime University. 116, 88–99 (2020). https://doi.org/10.26408/116.05.
  • 38. Zhang, H., Zhao, Z., Xu, X., Li, L.: Study on industrial wastewater treatment using superconducting magnetic separation. Cryogenics. 51, 6, 225–228 (2011). https://doi.org/10.1016/j.cryogenics.2010.07.002.
  • 39. Zięba, M., Ocieczek, A., Czerwonka, D.: Application of Selected Methods for Evaluating the Quality of Powdery Products as Stability Indicators of Cosmetics in Powder form on the Example of Dry Shampoos. Towaroznawcze Problemy Jakości. 2, 126–135 (2019). https://doi.org/10.19202/j.cs.2019.02.12.
  • 40. Zsigmondy, R.: Structure of gelatinous silicic acid. Theory of dehydration. Zeitschrift für anorganische und allgemeine Chemie. 71, 1, 356–377 (1911).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5e673eb-2b6c-4f8b-af89-4330492485bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.