PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Historic timber roofs modelling: prosthesis and resin repairs

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modele zabytkowych dachów drewnianych: protezy i naprawy z wykorzystaniem żywic
Języki publikacji
PL
Abstrakty
PL
Obowiązujące standardy i normy koncentrują się na współczesnych połączeniach kołkowych i zazwyczaj nie zawierają zbyt wielu wytycznych dla projektantów wykorzystujących tradycyjne połączenia. Skuteczna naprawa elementów drewnianych wymaga złożonych i interdyscyplinarnych działań, uważnych badań i realizacji. W obszarze odnowy historycznych budynków inżynierowie pracują na dawnych konstrukcjach, zbudowanych ze źle zachowanych elementów drewnianych, połączonych różnymi tzw. „tradycyjnymi złączami’. Połączenia odgrywają kluczową rolę w pracy konstrukcji starych drewnianych obiektów. Konieczne jest przeprowadzenie dalszych badań w tym obszarze, aby wypracować rzetelne specyfikacje dla projektantów, protokół procedur naprawczych oraz rekomendacje dla przyszłych interwencji renowacyjnych lub wzmacniających. Zabytkowe dachy drewniane odgrywają istotną rolę z punktu widzenia historycznego i estetycznego oraz wymagają dogłębnego zrozumienia oryginalnie zastosowanych zasad i technik, w celu wybrania właściwej strategii naprawczej. Podczas renowacji belki za pomocą protezy konieczne jest zaprojektowanie ciągłego połączenia pomiędzy protezą a zdrową częścią starej belki drewnianej. Połączenia takie wykonuje się najczęściej z wykorzystaniem wklejanych prętów. Artykuł opisuje badania przeprowadzone w celu opracowania Modelu Elementów Skończonych, który będzie w stanie prognozować pracę i zachowanie, np. wytrzymałość oraz sztywność wklejanych prętów wykorzystywanych w złączach ciągłych.
EN
Current standards mainly focus on modern dowel type joints and usually provide little guidance to designers regarding traditional joints. An effective timber repair needs a complex interdisciplinary work with careful investigation and execution. In the field of restoration of patrimonial buildings, engineers have to work with old structures made of badly preserved timber elements connected by particular connections known as “traditional connections”. The joints play a major role in the structural behaviour of the old timber frames. Further studies in the area are deemed necessary to establish a reliable design specification, the protocol of the repair procedure, and recommendations for the future rehabilitation or strengthening interventions. Patrimonial timber roofs are of considerable historic and aesthetic significance, and demand a thorough understanding of the principles and techniques involved to choose a suitable repair strategy. When restoring a beam with a prosthesis, a continuity joint between the prosthesis and the sound parts of the existing timber beams has to be designed. Those connections are most of the time made with glued-in rods. This paper presents a research carried out to develop a FE model which may predict the behaviour, e.g. the strength and the stiffness, of glued-in rods used for continuity joints.
Rocznik
Tom
Strony
52--60
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • University of Mons, Department of Civil Engineering
autor
  • University of Mons, Department of Civil Engineering
  • University of Artois, Laboratoire de Génie Civil et Géo-environement, Béthune, France
autor
  • University of Artois, Laboratoire de Génie Civil et Géo-environement, Béthune, France
autor
  • Chonnam National University, Dept. of Wood Science and Engineering, Gwangju, South Korea
Bibliografia
  • [1] Arriaga F. Bonding shear strength in timber in GFRP glued with epoxy adhesives. Wood Research 2011;56(3):297-310.
  • [2] Broughton J.G, Hutchinson A.R. Pull-out behaviour of steel rods bonded into timber. Materials and Structures 2001;34(2):100-109.
  • [3] Bainbridge R., Mettem C., Harvey K., Ansell M. Bonded-in rods connections for timber structures – development of design methods and test observations. International Journal of Adhesion & Adhesives 2002;22(1):47-59.
  • [4] Bengtsson C, Johanssen C.-J. GIROD-Glued-in rods for timber structures. Final Report. SMT4-CT97–2199, Lund, Sweden, 2002.
  • [5] Descamps T., Léoskool L., Laplume D., Van Parys L., Aira J.R. Sensitivity of timber hyperstatic frames to the stiffness of step and ridge joints. In: Proceedings of the 13th World Conference on Timber Engineering, Quebec, Canada, 2014.
  • [6] Branco J.M., Descamps T. Analysis and strengthening of carpentry joints. Construction and Building Materials 2015, http://dx.doi.org/10.1016/j. conbuildmat.2015.05.089.
  • [7] Aira J-R, Descamps T., Van Parys L., Leoskool L. Study of stress distribution and stress concentration factor in notched wood pieces with cohesive surfaces. European Journal of Wood and Wood Products 2015;73(3):325-334.
  • [8] Descamps T., Van Parys L., Datoussaïd S. Development of a Specifi c Finite Element for Timber Joint Modeling. International Journal for Computational Methods in Engineering Science and Mechanics 2011;12(1):1-13.
  • [9] Descamps T., Van Parys L., Noël J., Dagrain F. Engineering and patrimonial buildings: example of a rewarding interdisciplinary work. International Journal of Architectural Heritage 2011;5(3): 315-333.
  • [10] Parisi M., Piazza M. Mechanics of plain and retrofitted traditional timber connections. Journal of Structural Engineering 2000;126(12):1395-1403.
  • [11] Branco J.M., Piazza M., Cruz P.J.S. Experimental evaluation of different strengthening techniques of traditional timber connections. Engineering Structures 2011;33(8):2259-2270.
  • [12] Descamps T., Noël J. Semi-rigid analysis of old timber frames: defi nition of equivalent springs for joints modeling. Enhancement of the method, numerical and experimental validation. International Review of Mechanical Engineering 2009;3(2):230-239.
  • [13] Gerner M. Les assemblages des ossatures et charpentes en bois. Group Eyrolles, Paris, 2012.
  • [14] Sobon J.A. Historic American timber Joinery, a graphic guide. Timber Framers Guild, Becket, MA, 2012.
  • [15] Seike K. The Art of Japanese Joinery. Weatherhill/ Tankosha Publ., New York, 1977.
  • [16] Meisel A., Moosbrugger T., Schickhofer G. Survey and Realistic Modelling of Ancient Austrian Roof Structures. In: Proceedings of Conservation of Heritage Structure (CSHM-3), Ottawa, Canada, 2010.
  • [17] EN 1995–1:2005, Eurocode 5: Design of timber structures – Part 1–1: Common rules and rules for buildings. Brussels, CEN, European Committee for Standardization, 2005.
  • [18] Hewett C.A. English Historic Carpentry. Phillimore & Co. Ltd., London & Chichester, 1980.
  • [19] Hirst E., Brett A., Thomson A. Walker P., Harris R. The Structural Performance of Traditional Oak Tension & Scarf Joints. In: Proceedings of the 10th World Conference on Timber Engineering, Miyazaki, Japan, 2008.
  • [20] Thelandersson S., Larsen H.J. Timber Engineering. Chichester, John Wiley & Sons, 2003.
  • [21] Larsen H.J., Jensen J.L. Infl uence of semi-rigidity of joints on the behaviour of timber structures. Progress in Structural Engineering and Materials 2000;2(3):267-277.
  • [22] Palma P., Cruz H. Mechanical behaviour of traditional timber carpentry joints in service conditions – results of monotonic tests. In: Proceedings of “From material to Structure – Mechanical behaviour and failures of the timber structures”, XVI International Symposium, ICOMOS IWC, 2007.
  • [23] Uzielli L. Il manuale del Legno Strutturale, Vol. IV – Interventi sulle strutture. Mancosu, Rome, 2004 (in Italian).
  • [24] Drdácký M., Wald F., Sokol, Z. Sensitivity of historic timber structures to their joint response”. In: Proceedings of the 40th Anniversary Congress of the IASS, Madrid, 1999.
  • [25] Descamps T., Lambion J., Laplume D. Timber Structures: Rotational stiffness of carpentry joints”. In: Proceedings of the 9th World Conference on Timber Engineering, Portland, USA, 2006.
  • [26] Komatsu K., Kitamori A., Jung K. and Mori T. Estimation of The Mechanical Properties of Mud Shear Walls Subjecting to Lateral Shear Force. In: Proceedings of the 11th Int. Conference on Non-conventional Materials and Technologies, Bath, UK, 2009.
  • [27] Chang W.-S., Hsu M.-F., Komatsu K. Rotational performance of traditional Nuki joints with gap I: theory and verifi cation. Journal of Wood Sciences 2006;52(1):58-62.
  • [28] Wald F., Mares Z., Sokol M., Drdácký F. Component Method for Historical Timber Joints”. In: The Paramount Role of Joints into the Reliable Response of Structures. NATO Science Series Vol. 4, 2000, 417-424.
  • [29] Kasal B., Tannert T. (eds) In Situ Assessment of Structural Timber. RILEM State-of-the-Art Reports, Vol. 7, 2011.
  • [30] UNI 11138, Cultural heritage – Wooden artefacts – Building load bearing structures – Criteria for the preliminary evaluation, the design and the execution of works. UNI Milano, 2004.
  • [31] Aman R., West H., Cormier D. An evaluation of loose tenon joint strength. Forest Products Journal 2008;58(3):61-64.
  • [32] Judd J., Fonseca F., Walker C., Thorley P. Tensile strength of varied-angle mortise and tenon connectionsin timber frames. Journal of Structural Engineering 2012;138(5):636-644.
  • [33] Likos E., Haviarova E., Eckelman C., Erdil Y., OzcifciA. Effect of tenon geometry, grain orientation, and shoulder on bending moment capacity and moment rotation characteristics of mortise and tenon joints. Wood Fiber Sciences 2012;44(4):462-469.
  • [34] Koch H., Eisenhut L., Seim W. Multi-mode failure of form-fitting timber connections – Experimentaland numerical studies on the tapered tenon joint. Engineering Structures 2013;48:727-738.
  • [35] Feio A.O., Lourenço P.B., Machado J.S. Testing and modeling of a traditional timber mortise and tenon joint. Materials and Structures 2014;47(1-2): 213-225.
  • [36] Götz K.-H., Hoor D., Möhler K., Natterer J. Construire en Bois – Choisir, concevoir, realiser. Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 1993.
  • [37] DIN 1052, Entwurf, Berechnung und Bemessung von Holzbauwerk. Allgemeinebemessungs-regeln und Bemessungsregeln für den Hochbau, 2004.
  • [38] C.T.E., Documento Básico SEM. Seguridade structural – Estructuras de madera. A código técnico de la edifi cación, ministerio de vivienda, 2006.
  • [39] Branco J., Cruz P., Varum H., Piazza M. Portuguese traditional timber trusses. Static and dynamic behaviour. Technical Report E-19/05, Guimarães, Portugal, 2005 (in Portuguese).
  • [40] Derinaldis P.P., Tampone G. The Failure of the Timber Structures Caused by Incorrect Design-Execution of the Joints. Two Cases Study. In: ICOMOS IWC, XVI International symposium, Florence, Venice and Vicenza, 2007.
  • [41] Branco J.M. Infl uence of the joints stiffness in the monotonic and cyclic behaviour of traditional timber trusses. Assessment of the effi cacy of different strengthening techniques. PhD thesis, University of Minho and University of Trento, 2008.
  • [42] DIN EN 1995–1:2005, NCI NA 6.8.3. National German Annex to Eurocode 5: Design of timber structures – Part 1–1: Common rules and rules for buildings. Brussels, CEN, European Committee for Standardization, 2005.
  • [43] Yeomans D. The Repair of Historic Timber Structures. Thomas Telford Publishing, London, 2003.
  • [44] Tampone G. Mechanical Failures of the Timber Structural Systems. In: ICOMOS IWC, XVI International Symposium, Florence, Venice and Vicenza, 2007.
  • [45] Descamps T., Léoskool L., Laplume D., Van Parys L., Aira J.R. Sensitivity of timber hyperstatic frames to the stiffness of step and ridge joints. In: Proc. 12th World Conference on Timber Engineering, Quebec, Canada, August 10–14, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5e63484-b829-4723-bd6b-c0da9fd76d07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.