Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The primary purpose of the paper is to identify port areas most exposed to extreme hydrodynamic conditions (waves, sea currents, seabed level change). The results of modelling using SWAN wave model, MIKE 3D model, and reanalysis and measurement data were used in paper. Swell may exceed 0.8 m for winds exceeding 15 m s-1 from the west and south. During extreme conditions, sea currents can reach 0.4 ms-1 in the outer part of the bay adjacent to the port. Port basins do not show changes in the thickness of the seabed for the given maximum values of bottom currents. The most extensive deposition of the seabed and shore sediments (up to 0.04 m) is found on the Gdynia-Oksywie beach adjacent to the port and the approach fairway at the offshore currents. The outer area of the main breakwater is the most exposed to erosive activity (-0.012 m).
Rocznik
Tom
Strony
515--521
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Institute of Meteorology and Water Management – National Research Institute, Gdynia, Poland
autor
- Institute of Meteorology and Water Management – National Research Institute, Gdynia, Poland
autor
- Institute of Meteorology and Water Management – National Research Institute, Gdynia, Poland
Bibliografia
- [1] C3S: Caires, S., and Yan, K. 2020. Ocean surface wav indicators for the European coast from 1977 to 2100 derived from climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on DD‐MMM‐YYYY), 10.24381/cds.1a072dd6.
- [2] Cieślak, A., 1985. Ruch rumowiska wzdłuż wybrzeża Polski [Sediment motion along the coast of Poland], Prace Instytutu Morskiego 690. Gdańsk.
- [3] Cieślikiewicz, W., Herman, A. 2001. Wind wave modelling over the Baltic Sea and the Gulf of Gdańsk.Inż. Mor. Geotech 22, 4, 173‐184 (in Polish).
- [4] Cieślikiewicz W., Herman A. 2002. Numerical modelling of waves and currents over the Baltic Sea and the Gulf of Gdańsk.
- [5] Cieślikiewicz W., Dudkowska A., Gic‐Grusza G. 2016. Port of Gdańsk and Port of Gdyniaʹs exposure to threats resulting from storm extremes. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars, 2016, vol. 7, no. 1, pp.29‐36.
- [6] Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate . Copernicus Climate Change Service Climate Data Store (CDS), date of access.https://cds.climate.copernicus.eu/cdsapp#!/home.
- [7] Cupial A., Cieslikiewicz W. 2020. Characteristics of extreme wind wave events in the Gulf of Gdańsk and associated atmospheric conditions over the Baltic Sea. Conference Paper, EGU 2020.
- [8] Dudkowska A., Gic‐Grusza G. 2017. Wave‐induced bedload transport – a study of the southern Baltic Sea coastal zone. Geologos 23,1. doi: 10.1515/logos‐2017‐0001.
- [9] Gic‐Grusza, G. & Dudkowska, A., 2014. Modeling of wind wave induced sediment transport in the coastal zone of Polish marine areas (Southern Baltic). Baltic nternational Symposium (BALTIC), 2014 IEEE/OES, Tallin, 1–5.
- [10] Jegliński W., Uścinowicz S., Kramarska R., Przezdziecki P., 2012. Mapa geologiczna polskich obszarów morskich. PIG‐PIB.
- [11] Leppäranta M., Myrberg, K. 2009. Physical Oceanography of the Baltic Sea. Springer‐Verlag Berlin Heidelberg.
- [12] Liuzhi Zhao, Vijay Panchang, W Chen, Z Demirbilek, N Chhabbra, 2001. Simulation of wave breaking effects in two‐dimensional elliptic harbor wave models, Coastal Engineering, Volume 42, Issue 4, Pages 359‐373, ISSN 0378‐3839, https://doi.org/10.1016/S0378‐3839(00)00069‐7.
- [13] Miętus M., Filipiak J., Owczarek M. 2004. Klimat wybrzeża południowego Bałtyku. Stan obecny i perspektywy zmian [w:] Cyberski J.(red.) Środowisko polskiej strefy południowego Bałtyku‐stan obecny i przewidywane zmiany w przededniu integracji europejskiej, GTN Gdańsk, s.11‐44
- [14] Różyński G. 2010. Wave Climate in the Gulf of Gdańsk vs. Open Baltic Sea near Lubiatowo,Poland. Archives of Hydro‐Engineering and Environmental Mechanics 57, 2, 167‐176.
- [15] Soomere T., Behrens A., Tuomi L. et al. 2008.Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Natural Hazards and Earth System Science, Copernicus Publications on behalf of the European Geosciences Union. 8, 1, 37‐46.
- [16] Sapiega P., Zalewska T., Struzik P. 2023. Application of SWAN model for wave forecasting in the southern Baltic Sea supplemented with measurement and satellite data, Environmental Modelling & Software, 105624, ISSN 1364‐8152, https://doi.org/10.1016/j.envsoft.2023.105624.
- [17] Uścinowicz S., 1997, The Gdańsk Basin, Prz. Geol., 45 (6), 589–594, (in Polish).
- [18] Weisse R., Dailidiene I., Hünicke B., Kahma K., Madsen K., Omstedt A., Parnell K., Schöne T., Soomere T., Zhang W., Zorita E. 2021. Sea level dynamics and coastal erosion in the Baltic Sea region. arth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd‐12‐871‐2021
- [19] Zalewska T., Przygrodzki P., Suplińska M., Saniewski M., 2020, Geochronology of the southern Baltic Sea sediments derived from 210Pb dating, Quaternary Geochronology 56 (2020) 101039.
- [20] Zeidler, R. B. (Ed.). 1992. Assessment of the vulnerability of Poland`s coastal areas to sea level rise.H*T*S*. Gdańsk. 165.
- [21] Zeidler, R. B., Wróblewski, A., Miętus, M. et al. 1995. Wind, wave and storm surge regime at the Polish Baltic coast. Polish coast: past, present, future. J. Coastal Res 22, 33‐55.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5e36e0b-84f4-4e6a-8f7d-19d3a0a5002b