PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Scale effects and spatial distribution characteristics of 3D roughness of natural rock fracture surfaces: statistical analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The roughness feature of a natural rock fracture surface is an important factor affecting the shear and poromechanical behavior of rock. The scale effect and spatial distribution characteristics of the fracture surface roughness are notable challenges at rock engineering sites. In this article, morphological data of a large-scale field rock fracture surface were collected using a 3D scanner. Then, the original surface was divided into several small fracture surfaces. With the use of a 2D roughness statistical index, the 2D roughness (JRC2D) of the fracture profile was evaluated. The 3D roughness (JRC3D) of the fracture surface along different directions was obtained via the weighted averaging method. Based on four oblique analysis schemes, the elevation statistical trend and roughness scale effect of fracture surfaces with different widths were examined. With increasing fracture size, the average elevation (^) and the standard deviation of elevation (a) showed different typical change patterns. The impact of size variation on the fracture surface roughness includes four types and exhibits significant anisotropy. Based on small fissure surfaces without mutual coverage, the spatial distribution characteristics of the fracture roughness were analyzed and were proven to exhibit high dispersion and anisotropy. With increasing width of the analyzed small fracture, the roughest position on the fracture surface basically remained the same, but there was a significant change in roughness anisotropy.
Czasopismo
Rocznik
Strony
83--103
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • College of Architectural Engineering, Yangzhou Polytechnic Institute, Yangzhou 225100, China
  • State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, No 5 South Jinhua Road, Beilin District, Xi’an 710048, China
  • Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an 710048, China
autor
  • State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, No 5 South Jinhua Road, Beilin District, Xi’an 710048, China
  • Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an 710048, China
autor
  • College of Architectural Engineering, Yangzhou Polytechnic Institute, Yangzhou 225100, China
autor
  • College of Architectural Engineering, Yangzhou Polytechnic Institute, Yangzhou 225100, China
autor
  • College of Architectural Engineering, Yangzhou Polytechnic Institute, Yangzhou 225100, China
autor
  • College of Architectural Engineering, Yangzhou Polytechnic Institute, Yangzhou 225100, China
Bibliografia
  • 1. Bahaaddini M, Hagan PC, Mitra R, Hebblewhite BK (2014) Scale effect on the shear behaviour of rock joints based on a numerical study. Eng Geol 181:212-223
  • 2. Ban LR, Du WS, Jin TW, Qi CZ, Li XZ (2021) A roughness parameter considering joint material properties and peak shear strength model for rock joints. Int J Min Sci Technol 31:413-420
  • 3. Bao H, Xu XH, Lan HX, Zhang GB, Yin PJ, Yan CG, Xu JB (2020a) A new joint morphology parameter considering the effects of micro- slope distribution of joint surface. Eng Geol 275:105734
  • 4. Bao H, Zhang GB, Lan HX, Yan CG, Xu JB, Xu W (2020b) Geometrical heterogeneity of the joint roughness coefficient revealed by 3D laser scanning. Eng Geol 265:105415
  • 5. Barton N (1973) Review of a new shear-strength criterion for rock joints. Eng Geol 7(4):287-332
  • 6. Barton N (2014) Shear strength of rock, rock joints and rock masses- problems and some Solutions. In: Perucho A, Olalla C, Jimenez R (eds) Structures in and on rock masses: rock engineering and rock mechanics. CRC Press, Boca Raton, pp 3-16
  • 7. Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10(1-2):1-54
  • 8. Beer AJ, Stead D, Coggan JS (2002) Technical note estimation of the joint roughness coefficient (jrc) by visual comparison. Rock Mech Rock Eng 35:65-74
  • 9. Belem T, Homand-Etienne F, Souley M (2000) Quantitative parameters for rock joint surface roughness. Rock Mech Rock Eng 33(4):217-242
  • 10. Biswas U, Mukhopadhyay M, Mandal N (2023) Fractal analysis of anisotropic shear-fracture roughness from rocks and analogue laboratory models: a new approach for heterogeneous-slip characterization. Int J Rock Mech Min Sci 169:105432
  • 11. Chen SJ, Zhu WC, Yu QL, Liu XG (2016) Characterization of anisotropy of joint surface roughness and aperture by variogram approach based on digital image processing technique. Rock Mech Rock Eng 49:855-876
  • 12. Du SG, Chen Y, Fan LB (1996) Mathematical expression of JRC modified straight edge. J Eng Geol 4(2):36-43 (in Chinese)
  • 13. Du SG, Lin H, Yong R, Liu GJ (2022a) Characterization of joint roughness heterogeneity and its application in representative sample investigations. Rock Mech Rock Eng 55:3253-3277
  • 14. Du YH, Bao H, Yin PJ, Liu CQ, He Z, Xu XH (2022b) Study on the anisotropic shear strength of rough joint via 3D scanning, 3D printing, and 3D discrete-element modeling. Int J Geomech 22:04022058
  • 15. Ei-Soudani SM (1978) Profilometric analysis of fractures. Metallography 11(3):247-336
  • 16. Fan WC, Cao P (2020) A new 3D JRC calculation method of rock joint based on laboratory-scale morphology testing and its application in shear strength analysis. Bull Eng Geol Environ 79:345-354
  • 17. Fardin N (2008) Influence of structural non-stationarity of surface roughness on morphological characterization and mechanical deformation of rock joints. Rock Mech Rock Eng 41:267-297
  • 18. Ge YF, Lin ZS, Tang HM, Zhao BB (2021) Estimation of the appropriate sampling interval for rock joints roughness using laser scanning. Bull Eng Geol Environ 80(5):3569-3588
  • 19. Grasselli G, Egger P (2003) Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. Int J Rock Mech Min Sci 40(1):25-40
  • 20. Han GS, Jing HW, Jiang YJ, Liu RC, Wu JY (2020) Effect of cyclic loading on the shear behaviours of both unfilled and infilled rough rock joints under constant normal stiffness conditions. Rock Mech Rock Eng 53:31-57
  • 21. He MM, Wang HT, Ma CC, Zhang ZQ, Li N (2023a) Evaluating the anisotropy of drilling mechanical characteristics of rock in the process of digital drilling. Rock Mech Rock Eng 2023:1-19
  • 22. He L, Lu X, Copeland T, Chen JN, Yan JX, Zhao W (2023b) The impact of shear rate on the mechanical behavior of rock joints under multiple-influencing factors. Rock Mech Rock Eng 2023:1-18
  • 23. Hencher SR, Toy JP, Lumsden AC (2020) Scale dependent shear strength of rock joints. Scale effects in rock masses 93. CRC Press, Boca Raton, pp 233-240
  • 24. Hoek E (1983) Strength of jointed rock masses. Geotechnique 33(33):187-223
  • 25. Huan JY, He MM, Zhang ZQ, Li N (2020) Parametric study of integrity on the mechanical properties of transversely isotropic rock mass using DEM. Bull Eng Geol Environ 79(4):2005-2020
  • 26. Huan JY, Zhang ZQ, He MM (2021) Li N (2021) A new statistical parameter for determining joint roughness coefficient (JRC) considering the shear direction and contribution of different protrusions. Adv Civ Eng 6:1-15
  • 27. Huan JY, He MM, Zhang ZQ, Hu MD (2022) An investigation on local shearing mechanisms of irregular dentate rock joints using the PFC. Geofluids 2022:1-20
  • 28. Huang M, Hong CJ, Du SG, Luo ZY (2020) Experimental technology for the shear strength of the series-scale rock joint model. Rock Mech Rock Eng 53(8):5677-5695
  • 29. International Society of Rock Mechanics (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15(6):319-368
  • 30. Jang HS, Kang SS, Jang BA (2014) Determination of joint roughness coefficients using roughness parameters. Rock Mech Rock Eng 47(6):2061-2073
  • 31. Jiang Q, Yang B, Yan F, Liu C, Shi YE, Li LF (2020) New method for characterizing the shear damage of natural rock joint based on 3D engraving and 3D scanning. Int J Geomech 20(2):06019022
  • 32. Jiang Q, Yang Y, Yan F, Zhou JB, Li SJ, Yang B, Zheng H (2021) Deformation and failure behaviours of rock-concrete interfaces with natural morphology under shear testing. Constr Build Mater 293:123468
  • 33. Li YR, Zhang YB (2015) Quantitative estimation of joint roughness coefficient using statistical parameters. Int J Rock Mech Min Sci 77:27-35
  • 34. Li YC, Oh J, Mitra R, Hebblewhite B (2016) A constitutive model for a laboratory rock joint with multi-scale asperity degradation. Comput Geotech 72(2):143-151
  • 35. Lin H, Qin JX, Wang YX, Chen YF (2021) Determination of joint sur- face roughness based on 3D statistical morphology characteristic. Adv Civ Eng 2021:1-12
  • 36. Maerz NH, Franklin JA, Bennett CP (1990) Joint roughness measurement using shadow profilometry. Int J Rock Mech Min Sci Geomech Abstr 27(5):329-343
  • 37. Soleimani M (2017) Naturally fractured hydrocarbon reservoir simulation by elastic fracture modeling. Pet Sci 14:286-301
  • 38. Tang ZC (2020) Experimental investigation on temperature-dependent shear behaviors of granite discontinuity. Rock Mech Rock Eng 53(9):4043-4060
  • 39. Tang ZC, Huang RQ, Zhang JM, Wang XC (2015) Empirical peak shear strength criterion for rock joints based on slope root-mean- square. Rock and Soil Mechanics 36(12):3433-3438 (in Chinese) Tatone BSA, Grasselli G (2010) A new 2D discontinuity roughness parameter and its correlation with JRC. Int J Rock Mech Min Sci 47(8):1391-1400
  • 40. Tatone BSA, Grasselli G (2013) An investigation of discontinuity roughness scale dependency using high-resolution surface measurements. Rock Mech Rock Eng 46:657-681
  • 41. Tse R, Cruden DM (1979) Estimating joint roughness coefficients. Int J Rock Mech Min Sci Geomech Abstr 16(5):303-307
  • 42. Wang M, Wan W, Zhao YL (2020) Determination of joint roughness coefficient of 2D rock joint profile based on fractal dimension by using of the gene expression programming. Geotech Geol Eng 38(1):861-871
  • 43. Wang HT, He MM, Zhang ZQ, Zhu JW (2022) Determination of the constant mi in the Hoek-Brown criterion of rock based on drilling parameters. Int J Min Sci Technol 32:747-759
  • 44. Wong LNY, Meng FZ, Zhou H, Yu J, Cheng GT (2021) Influence of the choice of reference planes on the determination of 2D and 3D joint roughness parameters. Rock Mech Rock Eng 54:4393-4406
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5e0e1b5-2894-4ab2-b28c-6a05d6de192a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.