Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of investigations into dry methane reforming (DMR). The process was aimed at obtaining synthesis gas required for the production of dimethyl ether (DME). The effect of temperature, pressure and inlet gas composition on the process was determined in the experimental part of this work. The tests were carried out in a laboratory tubular reactor over a Ni/CaO–Al2O3 catalyst. The obtained experimental results were used to verify literature kinetic data and to develop a mathematical model of the DMR process.
Czasopismo
Rocznik
Tom
Strony
235--–252
Opis fizyczny
Bibliogr. 26 poz., tab., rys.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Łukasiewicz Research Network New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
Bibliografia
- 1. Alipour Z., Rezaei M., Meshkani F., 2014. Effects of support modifiers on the catalytic performance of Ni/Al2O3 catalyst in CO2 reforming methane. Fuel, 129, 197–203. DOI: 10.1016/j.fuel.2014.03.045.
- 2. Aramouni N.A.K., Touma J.G., Tarboush B.A., Zeaiter J., Ahmad M.N., 2018. Catalyst design for dry reforming of methane: Analysis review. Renewable Sustainable Energy Rev., 82, 2570–2585. DOI: 10.1016/j.rser.2017.09.076.
- 3. Bawadi A., Nur Azeanni A.G., Dai-Vet N.V., 2017. Recent advances in dry reforming of methane over Ni-based catalysts. J. Cleaner Prod., 162, 170–185. DOI: 10.1016/j.jclepro.2017.05.176.
- 4. Benguerba Y., Dehimi L., Virginie M., Dumas C., Ernst B., 2015. Modelling of methane dry reforming over Ni/Al2O3 catalyst in a fixed bed catalytic reactor. Reac. Kinet. Mech. Cat., 114, 109–119. DOI: 10.1007/s11144- 014-0772-5.
- 5. Borowiecki T., 2006. Coking of catalysts in essential chemical processes. Przem. Chem., 85, 699–702. Borowiecki T., Gołębiowski A., 2005. Modern synthesis gas and hydrogen plants. Przem. Chem., 84, 503–507.
- 6. Chanburanasiri N., Ribeiro A.M., Rodrigues A.E., Laosiripojana N., Assbumrungrat S., 2013. Simulation of methane steam reforming enhanced by in situ CO2 sorption utilizing K2CO3 promoted hydrotalcites for H2 production. Energy Fuels 27, 4457–4470. DOI: 10.1021/ef302043e.
- 7. Chein R.Y., Fung W.Y., 2019. Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts. Int. J. Hydrogen Energy, 44, 14303–14315. DOI: 10.1016/j.ijhydene.2019.01.113.
- 8. Collodi G., Wheeler F., 2010. Hydrogen production via steam reforming with CO2 capture. Chem. Eng. Trans., 19, 37–42. DOI: 10.3303/CET1019007.
- 9. Dębek R., Gramatyka A., Motak M., da Costa P., 2014. Syngas production by dry reforming of methane over hydrotalcite-derived catalysts. Przem. Chem., 93, 2026–2032.
- 10. Ding Y., Alpay E., 2000. Adsorption-enhanced steam-methane reforming. Chem. Eng. Sci., 55, 39–3940. DOI: 10. 1016/S0009-2509(99)00597-7.
- 11. Enger B.C., Lødeng R., Holmen A., 2008. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl. Catal.,𝐴, 346, 1–27. DOI: 10.1016/j.apcata. 2008.05.018.
- 12. Farniaei M., Abbasi M., Rahnama H., Rahimpour M.R., Shariatic A., 2014. Syngas production in a novel methane dry reformer by utilizing of tri-reforming process for energy supplying: Modeling and simulation. J. Nat. Gas Sci. Eng., 20, 132–146. DOI: 10.1016/j.jngse.2014.06.010.
- 13. Halabi M.H., de Croon M.H.J.M., van der Schaaf J., Cobden P.D., Schouten J.C., 2012. Kinetic and structural requirements for a CO2 adsorbent in sorption enhanced catalytic reforming of methane – Part I: Reaction kinetics and sorbent capacity. Fuel, 99, 154–164. DOI: 10.1016/j.fuel.2012.04.016.
- 14. Oliveira E.L.G., Grande C.A., Rodrigues A.E., 2009. Steam methane reforming in a Ni/Al2O3 catalyst: Kinetics and diffusional limitations in extrudates. Can. J. Chem. Eng., 87, 945–956. DOI: 10.1002/cjce.20223.
- 15. Oliveira E.L.G., Grande C.A., Rodrigues A.E., 2010. Methane steam reforming in large pore catalyst. Chem. Eng. Sci., 65, 1539–1550. DOI: 10.1016/j.ces.2009.10.018.
- 16. Pena M., Gómez J., Fierro J.L.G., 1996. New catalytic routes for syngas and hydrogen production. Appl. Catal., A., 144, 7–57. DOI: 10.1016/0926-860X(96)00108-1.
- 17. Richardson J.T., Paripatayadar S.A., 1990. Carbon dioxide reforming of methane with supported rhodium. Appl. Catal., 61, 293-309. DOI: 10.1016/S0166-9834(00)82152-1.
- 18. Rostrup-Nielsen J.R., Sehested J., Norskov J.K., 2002. Hydrogen and synthesis gas by steam- and CO2 reforming. Adv. Catal., 47, 65–138. DOI: 10.1016/S0360-0564(02)47006-X.
- 19. Snoeck J.W., Froment G.F., Fowles M., 2002. Steam/CO2 reforming of methane. Carbon filament formation by the Boundouard reaction and gasification by CO2, by H2 and by steam: Kinetics study. Ind. Eng. Chem. Res., 41, 4252–4265. DOI: 10.1021/ie010666h.
- 20. Wang Y.N., Rodrigues A. E., 2005. Hydrogen production from steam methane reforming coupled with in-situ CO2 capture: Conceptual parametric study. Fuel, 84, 1778–1789. DOI: 10.1016/j.fuel.2005.04.005.
- 21. Wender I., 1996. Reactions of synthesis gas. Fuel Process. Technol., 48, 189–297. DOI: 10.1016/S0378-3820(96) 01048-X. Xiu G., Li P., Rodrigues A.E., 2003.
- 22. Adsorption-enhanced steam-methane reforming with intraparticle-diffusion limitations. Chem. Eng. J., 95, 83–93. DOI: 10.1016/S1385-8947(03)00116-5.
- 23. York A.P.E., Xiao T., Green M.L.H., 2003. Brief overview of the partial oxidation of methane to synthesis gas. Top. Catal., 22, 345-358. DOI: 10.1023/A:1023552709642.
- 24. Zambrano D., Soler J., Herguido J., Menéndez M., 2019. Kinetic study of dry reforming of methane over Ni Ce/Al2O3 catalyst with deactivation. Top. Catal., 62, 456–466. DOI: 10.1007/s11244-019-01157-2.
- 25. Zambrano D., Soler J., Herguido J., Menéndez M., 2020. Conventional and improved fluidized bed reactors for dry reforming of methane: Mathematical models. Chem. Eng. J., 393, 124775. DOI: 10.1016/j.cej.2020.124775.
- 26. Zhang G., Liu J., Xu Y., Sun Y., 2018. A review of CH4-CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010-2017). Int. J. Hydrogen Energy, 43, 15030–15054. DOI: 10.1016/j.ijhydene.2018.06.091.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5dd4e71-658b-4e19-b771-cbd771a99fa7