PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research corrosion propagation time of reinforced concrete structures considering load influence

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Prediction of propagation time of corrosion is a key element in evaluating the service life of corroded reinforced concrete (RC) structures. Corroded steel products often expand in volume and thus generate tensile stress in the concrete cover. When this tensile stress exceeds the tensile strength of the concrete, cracking occurs. The tensile stresses in concrete due to corrosion are usually perpendicular to the longitudinal axis of the reinforcement. In the reinforced concrete beams, tensile stresses in concrete due to bending is perpendicular to the longitudinal direction of stirrups. In the reinforced concrete slabs, the tensile stresses in concrete due to bending is also perpendicular to the axis of longitudinal reinforcement subjected to bending in the other direction. In such cases, the tensile stresses in concrete due to corrosion of reinforcement has the same direction as the tensile stress caused by bending. When the load-induced stress in the concrete has the same direction as that of the corrosion-induced stress, cracks will likely appear more quickly and vice versa. The main objective of this paper is to build a predictive model of corrosion propagation time taking into account: (1) the effect of stresses due to load; (2) the change of corrosion current density. The model was implemented on Matlab software. The results show the influence of the load, and other parameters on the corrosion propagation stage, when considering the end of this corrosion propagation stage is cracking of concrete cover.
Rocznik
Strony
563--576
Opis fizyczny
Bibliogr. 15 poz., il., tab.
Twórcy
autor
  • Structural Engineering Section - University of Transport and Communications, Hanoi
  • Structural Engineering Section - University of Transport and Communications, Hanoi, Vietnam
Bibliografia
  • [1] K. Tuutti, “Service life of structures with regard to corrosion of embedded steel”, in Proceedings of the International Conference on Performance of Concrete in Marine Environment, ACI SP-65. 1980, pp. 223-236.
  • [2] DuraCrete - Final Technical Report General Guidelines for Durability Design and Redesign. The European Union-Brite EuRam III.: 2000. DuraCrete, 2000.
  • [3] S. Lay, P. Schießl, LIFECON DELIVERABLE D 3.2 Service Life Models. European Community, 2003.
  • [4] “Life-365 Service Life Prediction Model”, in: 2.2.3 V, The US: Life-365™ Consortium III, 2020.
  • [5] Z.P. Bazant, “Physical Model for Steel Corrosion in Sea Structures - Theory”, Journal of the Structural Division, 1979, vol. 105, no. 6, pp. 1137-1153.
  • [6] A. Beeby, “Cracking, cover and corrosion of reinforcement”, Concrete International, 1983, vol. 5, pp. 35-40.
  • [7] W. López, J.A. González, “Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement”, Cement and Concrete Research, 1993 vol. 23, no. 2, pp. 368-376, DOI: 10.1016/0008-8846(93)90102-F.
  • [8] L. Youping, “Modeling the Time-to-Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures”, Virginia Polytechnic Institute and State University, 1996. [Online]. Available: http://hdl.handle.net/10919/30541.
  • [9] J. Cervenka, et al., “Durability assessment of reinforced concrete structures assisted by numerical simulation”, in Proceedings of an International Conference (ICACMS), RILEM Publications, 2017.
  • [10] C.Q. Li, S.T. Yang, “Prediction of Concrete Crack Width under Combined Reinforcement Corrosion and Applied Load”, Journal of Engineering Mechanic, 2011, 137, no. 11, vol. 722-731, DOI: 10.1061/(ASCE)EM.1943-7889.0000289.
  • [11] Z. Gao, R.Y. Liang, A.K. Patnaik, “Effects of sustained loading and pre-existing cracks on corrosion behavior of reinforced concrete slabs”, Construction and Building Materials, 2016 vol. 124, pp. 776-785, DOI: 10.1016/j.conbuildmat.2016.08.010.
  • [12] S. Morinaga, “Prediction of Service Lives of Reinforced Concrete Buildings Based on Rate of Corrosion of Reinforcing Steel”, Special Report of Institute of Technology, Shimizu Corporation, June, Tokyo, Japan, 1988.
  • [13] T. Liu, R.W. Weyers, “Modeling the dynamic corrosion process in chloride contaminated concrete structures”, Cement and Concrete Research, 1998, vol. 28, no. 3, pp. 365-379, DOI: 10.1016/S0008-8846(98)00259-2.
  • [14] C. Lu, W. Jin, R. Liu, “Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures”, Corrosion Science, 2011 vol. 53, no. 4, pp. 1337-1347, DOI: 10.1016/j.corsci.2010.12.026.
  • [15] T. El Maaddawy, K. Soudki, “A model for prediction of time from corrosion initiation to corrosion cracking”, Cement and Concrete Composites, 2007, vol. 29, no. 3, pp. 168-75, DOI: 10.1016/j.cemconcomp.2006.11.004.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5d66a84-5ab5-4092-a635-2ce7ac073b88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.