PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D Model Fragile Watermarking Scheme for Authenticity Verification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the development of new technologies, 3D models are becoming increasingly important. They are used to design new models, document cultural heritage and scan valuable artefacts or evidence. They are also used in medicine. For these reasons, they are vulnerable to forgery. Protection against forgery done by encrypting the model or signing it digitally may restrict access to the data or require additional files to store the signatures. A good way to confirm the originality of 3D models is fingerprinting. This technique involves attaching a fragile watermark directly to the watermarked data. In the paper, we propose a new fingerprinting method for 3D models. The method hides the fingerprint in the least significant digits of the coordinates of the selected vertices. The fingerprint is created by calculating the hash-based message authentication code (HMAC) from the model textures and all vertex coordinates except the digits intended to attach the fingerprint. These digits are processed using discrete wavelet transform (DWT). The HMAC is attached to the selected DWT coefficients. The inverse discrete wavelet transform is then performed to obtain the new values of the modified digits. The digits are put back into the 3D model coordinates and the model is reassembled. Verification of the model originality is done according to the used steganographic key and consists of comparing the HMAC value extracted from the fingerprinted model with the HMAC value calculated from it. The same values of both HMAC results indicate that the model has not been modified. The proposed method allows efficient model fingerprinting and detection of changes made to any part of the model. The included fingerprints are transparent – the peak signal-to-noise ratio (PSNR) of a fingerprinted model can reach 150dB and its structural similarity can be over 99.8%.
Słowa kluczowe
Twórcy
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
Bibliografia
  • 1. Ligon S. C., Liska R., Stampfl J., Gurr M., Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chemical Reviews, 2017, 117(15), 10212-10290. https://doi.org/10.1021/acs. chemrev.7b00074
  • 2. Bagheri A., Jin J. Photopolymerization in 3D Printing. ACS Applied Polymer Materials, 2019, 1(4), 593-611. https://doi.org/10.1021/acsapm.8b00165
  • 3. DebRoy, T., et al. (2018). Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science, 92, 112-224. https://doi.org/10.1016/j.pmatsci.2017.10.001
  • 4. Chen Z., Li Z., Li J., Liu C., Lao C., Fu Y., Liu C., Li Y., Wang P., He Y. 3D printing of ceramics: A review. Journal of the European Ceramic Society, 2019, 39(4), 661-687. https://doi.org/10.1016/j. jeurceramsoc.2018.11.013
  • 5. Liu Z., Zhang M., Bhandari B., Wang Y. 3D printing: Printing precision and application in food sector. Trends in Food Science & Technology, 2017, 69(Part A), 83-94. https://doi.org/10.1016/j. tifs.2017.08.018.
  • 6. Barszcz M., Dziedzic K., Skublewska‐Paszkowska M., Powroznik P. 3D scanning digital models for virtual museums. Computer Animation and Virtual Worlds 2023, 34(3-4), e2154. https://doi. org/10.1002/cav.2154.
  • 7. Skublewska-Paszkowska M., Powroźnik P., Barszcz M., Dziedzic K. Dual Attention Graph Convolutional Neural Network to Support Mocap Data Animation. Advances in Science and Technology Research Journal 2023, 17(5), 313-325. https://doi. org/10.12913/22998624/171592.
  • 8. Nowomiejska K., Powroźnik P., Skublewska-Paszkowska M., Adamczyk K., Concilio M., Sereikaite L., Zemaitiene R., Toro M. D., Rejdak R. Residual Attention Network for distinction between visible optic disc drusen and healthy optic discs. Optics and Lasers in Engineering 2024, 176, https://doi. org/108056. 10.1016/j.optlaseng.2024.108056.
  • 9. Józwik J., Dziedzic, K. Digital shape and geometric dimension analysis of polymer fuel tanks. Advances in Science and Technology Research Journal 2021, 15(4), 38-48. https://doi. org/10.12913/22998624/141649.
  • 10. Montusiewicz J., Barszcz M., Dziedzic K. Photorealistic 3D digital reconstruction of a clay pitcher. Advances in Science and Technology Research Journal 2019, 13(4), 255-263. https://doi. org/10.12913/22998624/113276.
  • 11. Peng F., Liao T., Long M., Li J., Zhang W., Zhou Y. Semi-Fragile Reversible Watermarking for 3D Models Using Spherical Crown Volume Division. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(11), 6531-6543. https:// doi.org/10.1109/TCSVT.2023.3272955
  • 12. Modigari N., Valarmathi M., Anbarasi L. J., Gandomi A. H. Levenberg–Marquardt deep neural water-marking for 3D mesh using nearest centroid salient point learning. Scientific Reports, 2024, 14(1), 1-18. https://doi.org/10.1038/s41598-024-57360-z
  • 13. Sola A., Sai Y., Trinchi A., Chen S. How Can We Provide Additively Manufactured Parts with a Fingerprint? A Review of Tagging Strategies in Additive Manufacturing. Materials, 2022, 15(1), 85. https://doi.org/10.3390/ma15010085
  • 14. Pham G. N., Lee S.-H., Kwon O.-H., Kwon K. R. A 3D Printing Model Watermarking Algorithm Based on 3D Slicing and Feature Points. Electronics, 2018, 7(2), 23. https://doi.org/10.3390/ electronics7020023
  • 15. Wei C., Sun Z., Huang Y., Li L. Embedding anticounterfeiting features in metallic components via multiple material additive manufacturing. Additive Manufacturing, 2018, 24, 1-12. https://doi. org/10.1016/j.addma.2018.09.003
  • 16. Matvieieva N., Neupetsch C., Oettel M., Makdani V., Drossel W.-G. A novel approach for increasing the traceability of 3D printed medical products. Current Directions in Biomedical Engineering, 2020, 6(3), 315-318. https://doi.org/10.1515/cdbme-2020-3081
  • 17. Xiao K., Chen X., Xu G., Xiao S., Yu N. A survey on 3D printing security: From concepts to applications. IEEE Internet of Things Journal, 2022, 9(11), 8424-8446.
  • 18. Kozieł G. Fourier transform based methods in sound steganography. Actual Problems of Economics 2011, 120(6), 321-328.
  • 19. Kozieł G. Simplified steganographic algorithm based on Fourier transform. Advanced Science Letters 2014, 20(2), 505-509. https://doi.org/10.1166/ asl.2014.5322.
  • 20. Botta M., Cavagnino D., Gribaudo M., Piazzolla P. Fragile watermarking of 3D models in a transformed domain. Applied Sciences 2020, 10(9), 3244. https:// doi.org/10.3390/app10093244.
  • 21. Ohbuchi R., Masuda H., Aono M. Watermarking three-dimensional polygonal models through geometric and topological modifications. IEEE Journal on Selected Areas in Communications 1998, 16(4), 551-560. https://doi.org/10.1109/49.668977.
  • 22. Praun E., Hoppe H., Finkelstein A. Robust mesh watermarking. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, 1999.
  • 23. Ohbuchi R., Takahashi S., Miyazawa T., Mukaiyama A. Watermarking 3D polygonal meshes in the mesh spectral domain. In Proceedings of the Graphics Interface 2001 Conference, 2001.
  • 24. Ohbuchi R., Mukaiyama A., Takahashi S. A frequency-domain approach to watermarking 3D shapes. Computer Graphics Forum 2002, 21(3), 373-382. https://doi.org/10.1111/1467-8659.00597.
  • 25. Barni M., Bartolini F., Cappellini V., Corsini M., Garzelli A. Digital watermarking of 3D meshes. Mathematics of Data/Image Coding, Compression, and Encryption VI, with Applications 2004, 5208, 68–79. https://doi.org/10.1117/12.507437.
  • 26. Yu Z., Ip H. H., Kwok L. A robust watermarking scheme for 3D triangular mesh models. Pattern Recognition 2003, 36(11), 2603–2614. https://doi. org/10.1016/S0031-3203(03)00158-1.
  • 27. Li L., Zhang D., Pan Z., Shi J., Zhou K., Ye K. Watermarking 3D mesh by spherical parameterization. Computer Graphics 2004, 28(7), 981–989. https:// doi.org/10.1016/j.cag.2004.07.004.
  • 28. Cho J. W., Prost R., Jung H. Y. An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms. IEEE Transactions on Signal Processing 2007, 55(1), 142–155. https://doi. org/10.1109/TSP.2006.885729.
  • 29. Mehta S., Prabhakaran B. 3D content fingerprinting. 2014 IEEE International Conference on Image Processing (ICIP), 2014, 4797-4801. https:// doi.org/10.1109/ICIP.2014.7025929.
  • 30. Abdallah E. E., Abdallah A. E. Normal vectors and spanning tree for 3D object fingerprinting. 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), 2013. https://doi.org/10.1109/AEECT.2013.671646.
  • 31. Yeo B.-L., Yeung M. M. Watermarking 3D objects for verification. Proceedings of the 1999 IEEE International Conference on Image Processing (ICIP’99), 1999, 1, 580-584. https://doi. org/10.1109/ICIP.1999.821608.
  • 32. Wang Y. P., Hu S. M. A new watermarking method for 3D models based on integral invariants. IEEE Transactions on Visualization and Computer Graphics 2009, 15(2), 285–294. https://doi.org/10.1109/TVCG.2008.92.
  • 33. Yeung M., Yeo B. L. Fragile watermarking of three- dimensional objects. Proceedings of the International Conference on Image Processing, 1998, 2, 442– 446. https://doi.org/10.1109/ICIP.1998.723485.
  • 34. Yeo B. L., & Yeung, M. M. Watermarking 3D objects for verification. IEEE Computer Graphics and Applications 1999, 19(1), 36–45. https://doi. org/10.1109/38.736467.
  • 35. Huang C. C., Yang Y. W., Fan C. M., Wang J. T. A spherical coordinate based fragile watermarking scheme for 3D models. International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, 2013, 566–571. https:// doi.org/10.1007/978-3-642-38577-3_66.
  • 36. Chou C. M., Tseng D. C. A public fragile watermarking scheme for 3D model authentication. Computer-Aided Design 2006, 38(11), 1154–1165. https://doi.org/10.1016/j.cad.2006.07.001.
  • 37. Chou C. M., Tseng D. C. Affine-transformation-invariant public fragile watermarking for 3D model authentication. IEEE Computer Graphics and Applications 2009, 29(2), 72–79. https://doi. org/10.1109/MCG.2009.20.
  • 38. Wang, W. B., Zheng, G. Q., Yong, J. H., & Gu, H. J. (2008). A numerically stable fragile watermarking scheme for authenticating 3D models. Computer-Aided Design, 40(6), 634–645. https://doi. org/10.1016/j.cad.2008.03.002
  • 39. Su Z., Li W., Kong J., Dai Y., Tang W. Watermarking 3D CAD models for topology verification. Computer-Aided Design 2013, 45(8), 1042–1052. https:// doi.org/10.1016/j.cad.2013.04.005.
  • 40. Motwani M., Motwani R., Harris J. F. Fragile watermarking of 3D models using genetic algorithms. Journal of Electronic Science and Technology 2010, 8(3), 244–250.
  • 41. Setiadi D. I. M., Rustad S., Shidik G. F. Digital image steganography survey and investigation (Goal, assessment, method, development, and dataset). Signal Processing 2023, 206. https://doi.org/10.1016/j. sigpro.2023.108476.
  • 42. Wani M. A., Sultan B. Deep learning based image steganography: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2022, e1481. https://doi.org/10.1002/widm.1481.
  • 43. Meng L., Xinghao J., Tanfeng S. A review of coverless steganography. Neurocomputing 2023. 566. 126945. https://doi.org/10.1016/j. neucom.2023.126945.
  • 44. Boukhennoufa N., Laamari Y., Benzid R. Signal denoising using a low computational translationin-variant-like strategy involving multiple wavelet bases: application to synthetic and ECG signals. Metrology and Measurement Systems, 2024, 31(2), 259-278. https://doi.org/10.24425/mms.2024.148548
  • 45. Zhang Z. The Improvement of the Discrete Wavelet Transform. Mathematics, 2023, 11(8), 1770. https:// doi.org/10.3390/math11081770
  • 46. Li, B., Liao, Y., Guo, R., Li, Z., Gu, Z.,Dai, X. Wavelet Transform and Damped Recursive Least Squares Method for Measurement Uncertainty Evaluation in EV Charging Pile Meters. Metrology and Measurement Systems, 2024, 31(3). https://doi. org/10.24425/mms.2024.150286
  • 47. Hannoun K., Hamiche H., Lahdir M., Megherbi O., Laghrouche M., Bettayeb M., Robust digital image watermarking scheme with a fractional-order discrete-time chaotic scheme and DWT-SVD transform. Physica Scripta 2024, 99(5),055255. doi:10.1088/1402-4896/ad3d41.
  • 48. Sweldens W. Wavelets and the Lifting Scheme: A 5 Minute Tour, https://cm-bell-labs.github.io/who/ wim/papers/iciam95.pdf (Accessed: 2024.06.07).
  • 49. Structural Similarity Index. https://www.ni.com/ docs/en-US/bundle/ni-vision-concepts-help/ page/structural_similarity_index.html (Accessed: 2024.06.07).
  • 50. Kęsik J., Miłosz M., Montusiewicz J., Samarov K. Documenting the geometry of large architectural monuments using 3D scanning – the case of the dome of the Golden Mosque of the Tillya-Kori Madrasah in Samarkand. Digital Applications in Archaeology and Cultural Heritage 2021, 22, 1-11. https://doi.org/10.1016/j.daach.2021.e00199.
  • 51. Miłosz M., Kęsik J., Montusiewicz J. Three-Dimensional Digitization of Documentation and Perpetual Preservation of Cultural Heritage Buildings at Risk of Liquidation and Loss—The Methodology and Case Study of St Adalbert’s Church in Chicago. Electronics 2024, 13(3), 1-26. https://doi. org/10.3390/electronics13030561.
  • 52. Chou C. M., Tseng D. C. Affine-Transformation Invariant Public Fragile Watermarking for 3D Model Authentication. IEEE Computer Graphics and Applications 2009, 29(2), 72-79. https://doi. org/10.1109/mcg.2009.20.
  • 53. Wu H.T., Cheung Y.M. A Fragile Watermarking Scheme for 3D Meshes. Proceedings of the 7th Workshop on Multimedia and Security, 2005, 117- 124. https://doi.org/10.1145/1073170.1073192.
  • 54. Lin H.Y.S., Liao H.Y.M., Lu C.S., Lin J.C. Fragile watermarking for authenticating 3-D polygonal meshes. IEEE Transactions on Multimedia 2005, 7(6), 997-1006. https://doi.org/10.1109/ TMM.2005.858412.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5d0abd1-adb2-4b3b-98af-59064da5643d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.