Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Materiały termochromowe w sektorze farb i lakierów. Część II: postęp w dziedzinie pigmentów i pokryć
Języki publikacji
Abstrakty
Gaining knowledge in the field of color perception and measurement allows for the continuation of considerations on thermochromism. This article, which is the second part of the authors’ review, is devoted to the progress in the field of pigments and coatings with thermochromic properties. The article presents, in a concise and accessible way, the most important information on thermochromic materials, both of organic and inorganic origin. The reader is introduced to the physicochemical characteristics of thermochromic pigments and the mechanisms of their action. The state of knowledge on the latest achievements in this field is reviewed, taking into account modern methods of synthesis of thermochromic pigments together with examples of coatings obtained with their participation. An analysis of the thermochromic pigments market was prepared, including a forecast of its value and size on a global basis.
Zyskanie wiedzy z zakresu postrzegania i pomiaru barwy umożliwia kontynuację rozważań o termochromizmie. Niniejszy artykuł, stanowiący drugą część pracy przeglądowej autorów, poświęcony jest postępowi w dziedzinie pigmentów i pokryć malarskich o właściwościach termochromowych. W artykule w zwięzły i przystępny sposób przedstawiono najważniejsze informacje dotyczące materiałów termochromowych, zarówno pochodzenia organicznego, jak i nieorganicznego. Przybliżono czytelnikowi charakterystykę fizykochemiczną pigmentów termochromowych oraz mechanizmy ich działania. Dokonano przeglądu stanu wiedzy w zakresie najnowszych osiągnięć w tej materii, uwzględniając nowoczesne metody syntezy pigmentów termochromowych wraz z przykładami pokryć malarskich otrzymywanych z ich udziałem. Sporządzono analizę rynku pigmentów termochromowych obejmującą prognozę jego wartości i wielkości w ujęciu globalnym.
Wydawca
Czasopismo
Rocznik
Tom
Strony
190--205
Opis fizyczny
Bibliogr. 147 poz., rys., tab.
Twórcy
autor
- Łukasiewicz Research Network – Institute of Polymer Materials, Toruń, Poland
- Doctoral School, Silesian University of Technology, Gliwice, Poland
autor
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland
autor
- Łukasiewicz Research Network – Institute of Polymer Materials, Toruń, Poland
Bibliografia
- [1] B. Kopyciński, A. Duda, K. Jaszcz, M. Zubielewicz. 2024. “Thermochromic materials in the paints and varnishes sector. Part I: perception and measurement of color.” Ochrona Przed Korozją 6: 152–164. DOI: 10.15199/40.2024.6.1.
- [2] L. I. Labrecque, V. M. Patrick, G. R. Milne. 2013. “The Marketers’ Prismatic Palette: A Review of Color Research and Future Directions.” Psychology & Marketing 30(2): 187–202. DOI: 10.1002/mar.20597.
- [3] A. Hakami, S. S. Srinivasan, P. K. Biswas, A. Krishnegowda, S. L. Wallen, E. K. Stefanakos. 2022. “Review on thermochromic materials: development, characterization, and applications.” Journal of Coatings Technology and Research 19: 377–402. DOI: 10.1007/s11998-021-00558-x.
- [4] C. F. Zhu, A. B. Wu. 2005. “Studies on the synthesis and thermochromic properties of crystal violet lactone and its reversible thermochromic complexes.” Thermochimica Acta 425(1-2): 7-12. DOI: 10.1016/j.tca.2003.08.001.
- [5] X. B. Li, X. Y. Hao, H. N. Zhang, W. H. Zhang, F. C. Li. 2023. “Review on multi- parameter simultaneous measurement techniques for multiphase flow – Part A: Velocity and temperature/pressure.” Measurement 223: 113710. DOI: 10.1016/j.measurement.2023.113710
- [6] Y. Tapuhi, O. Kalisky, I. Agranat. 1979. „Thermochromism and thermal E,Z isomerizations in bianthrones.” Journal of Organic Chemistry 44(12): 1949–1952. DOI: 10.1021/jo01326a012.
- [7] H. Jia, X. Ji, Z. Shao, Z. Li, A. Huang, Z. Wen, S. Gu, P. Jin, X. Cao. 2022. “Li+/Al3+ Composite Solid Electrolyte Based Electro-Thermal Dual Responsive Devices with Optimized Optical Contrast and Cycle Durability.” Advanced Optical Materials 10(11): 2200106. DOI: 10.1002/adom.202200106.
- [8] Y. P. Varshni. 1967. “Temperature dependence of the energy gap in semiconductors.” Physica 34(1): 149–154. DOI: 10.1016/0031-8914(67)90062-6.
- [9] T. Hamaguchi, I. Ando. 2015. “Synthesis and characterisation of a new six- -coordinated thermochromic Ni complex.” Inorganica Chimica Acta 427: 144–149. DOI: 10.1016/j.ica.2014.12.013.
- [10] F. Chen, Z. Xu, S. Wang. 2025. “Phase Controllable preparation and reversible thermochromism of LaAl1-xFexO3 (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) pigments.” Ceramics International 51(11): 13931–13939. DOI: 10.1016/j.ceramint.2025.01.226.
- [11] R. D. Willett, J. A. Haugen, J. Lebsack, J. Morrey. 1974. “Thermochromism in copper( II) chlorides. Coordination geometry changes in tetrachlorocuprate(2-) anions.” Inorganic Chemistry 13(10): 2510–2513. DOI: 10.1021/ic50140a040.
- [12] M. Miar, A. Shiroudi, K. Pourshamsian, A. R. Oliaey, F. Hatamjafari. 2021. “Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo
- [d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and substituent effects.” Journal of Chemical Research 45(1-2): 147–158. DOI: 10.1177/1747519820932.
- [13] A. Seeboth, A. Klukowska, R. Ruhmann, D. Lötzsch. 2006. “Thermochromic Effects of Leuco Dyes Studied in Polypropylene.” Chinese Journal of Polymer Science 24(4): 363–368. DOI: 10.1142/S0256767906001400.
- [14] I. J. Ko, J. H. Park, G. W. Kim, R. Lampande, J. H. Kwon. 2019. „An optically efficient full-color reflective display with an electrochromic device and color production units.” Journal of Information Display 20(3): 155–160. DOI: 10.1080/15980316.2019.1649310.
- [15] O. Panák, M. Držková, M. Kaplanová. 2015. “Insight into the evaluation of colour changes of leuco dye based thermochromic systems as a function of temperature.” Dyes and Pigments 120: 279–287. DOI: 10.1016/j.dyepig.2015.04.022.
- [16] C. Wang, W. Gui, K. Zhang, L. Cao, R. An, J. Zhou, M. Li, X. Chen, H. Wang, J. Dai, Y. Zhao. 2025. “Typical Thermochromic Dye Crystal Violet Lactone Acts as an Endocrine Disruptor: Nontargeted Screening, Prioritization, and In Vivo Experimental Verification.” Environmental Science & Technology 59(26): 13227– 13239. DOI: 10.1021/acs.est.5c04123.
- [17] W. Zou, C. Li, Y. Zhang, X. Han, D. Sun, L. Song, N. Zou. 2024. “A new thermochromic crystal violet lactone/lactic acid/myristyl alcohol ternary mixture encapsulated with a poplar-based cellulose/lignin/SiO2 framework.” International Journal of Biological Macromolecules 282: 136759. DOI: 10.1016/j.ijbiomac.2024.136759.
- [18] K. Ramig, O. Lavinda, D. J. Szalda, I. Mironova, S. Karimi, F. Pozzi, N. Shah, J. Samson, H. Ajiki, L. Massa, D. Mantzouris, I. Karapanagiotis, C. Cooksey. 2015. “The nature of thermochromic effects in dyeings with indigo, 6-bromoindigo, and 6,6′-dibromoindigo, components of Tyrian purple.” Dyes and Pigments 117: 37–48. DOI: 10.1016/j.dyepig.2015.01.025.
- [19] W. Luo, Y. Qin, Z. Ma, L. Wang, Q. Cheng, C. Tan, M. Zhang, H. Zhang, B. Wang, X. Song. 2025. “Exploring the thermochromic properties of fluoran-based complexes: Synthesis, structural influence, and application in temperature sensing.” Dyes and Pigments 232: 112483. DOI: 10.1016/j.dyepig.2024.112483.
- [20] M. A. Spirache, P. Marrec, A. J. Dias Parola, C. A. Tonicha Laia. 2023. “Reversible thermochromic systems based on a new library of flavylium spirolactone leuco dyes.” Dyes and Pigments 214: 111208. DOI: 10.1016/j.dyepig.2023.111208.
- [21] M. Wang, G. Liu, H. Gao, C. Su, J. Gao. 2023. “Preparation and performance of reversible thermochromic phase change microcapsules based on negative photochromic spiropyran.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 659: 130808. DOI: 10.1016/j.colsurfa.2022.130808.
- [22] M. R. di Nunzio, P. L. Gentili, A. Romani, G. Favaro. 2008. “Photochromic, Thermochromic, and Fluorescent Spirooxazines and Naphthopyrans: A Spectrokinetic and Thermodynamic Study.” ChemPhysChem 9(5): 768–775. DOI: 10.1002/cphc.200700789.
- [23] Y. Sekiguchi , S. Takayama , T. Gotanda , K. Sano. 2007. “Molecular Structures of the Coloring Species of a Leuco Dye with Phenolic Color Developers Get access Arrow.” Chemistry Letters 36(8): 1010–1011. DOI: 10.1246/cl.2007.1010.
- [24] Y. Pu, J. Fang. 2022. “Preparation and thermochromic behavior of low-temperature thermochromic microcapsule temperature indicators.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 653: 129889. DOI: 10.1016/j.colsurfa.2022.129889.
- [25] P. Bamfield, M. Hutchings. 2018. Chromic phenomena: technological applications of colour chemistry. Royal Society of Chemistry. DOI: 10.1039/9781788012843.
- [26] S. Singh. 2000. ”Phase transitions in liquid crystals.” Physics Reports 324(2–4): 107–269. DOI: 10.1016/S0370-1573(99)00049-6.
- [27] J. P. F. Lagerwall, F. Giesselmann. 2006. “Current Topics in Smectic Liquid Crystal Research.” ChemPhysChem 7(1): 20–45. DOI: 10.1002/cphc.200500472.
- [28] I. Sage. “Thermochromic liquid crystals.” 2011. Liquid Crystals 38(11-12): 1551– 1561. DOI: 10.1080/02678292.2011.631302.
- [29] P. A. Brown, S. A. Fischer, J. Kołacz, C. Spillmann, D. Gunlycke. 2019. “Thermotropic liquid crystal (5CB) on two-dimensional materials.” Physical Review E 100: 062701. DOI: 10.1103/PhysRevE.100.062701.202
- [30] M. Beigmohammadi, M. Khadem Sadigh, J. Poursamad. 2024. “Dielectric anisotropy changes in MBBA liquid crystal doped with barium titanate by a new method.” Scientific Reports 14: 5756. DOI: 10.1038/s41598-024-56219-7.
- [31] E. Rusen, A. Diacon, R. A. Mitran, A. Dinescu, C. Nistor, R. Șomoghi, A. C. Boscornea, D. Mănăilă-Maximean. 2022. “E7 nematic liquid crystal encapsulated in a polymeric photonic crystal.” European Polymer Journal 175: 111374. DOI: 10.1016/j.eurpolymj.2022.111374.
- [32] Y. Cheng, X. Zhang, C. Fang, J. Chen, Z. Wang. 2018. “Discoloration mechanism, structures and recent applications of thermochromic materials via different methods: A review.” Journal of Materials Science & Technology 34(12): 2225– 2234. DOI: 10.1016/j.jmst.2018.05.016.
- [33] H. Zhang, C. Li, D. Chen, J. Zhao, X. Jiao, Y. Xia. 2017. “Facile preparation of Prussian blue analogue Co3
- [Co(CN)6]2 with fine-tuning color transition temperature as thermochromic material.” CrystEngComm 19: 2057–2064. DOI: 10.1039/C7CE00384F.
- [34] J. H. Day. 1968. “Thermochromism of inorganic compounds.” Chemical Reviews 68(6): 649–657. DOI: 10.1021/cr60256a001.
- [35] E. Langer, M. Zubielewicz, B. Kopyciński. 2024. ”Coatings with high solar reflectivity: heat build-up in laboratory and real conditions.” Journal of Coatings Technology and Research 21: 1783–1793. DOI: 10.1007/s11998-024-00935-2.
- [36] G. Ferro, D. Carole, F. Cauwet, L. Acher, H. Ji, R. Chiriac, F. Toche, A. Brioude. 2022. “Thermochromic properties of some colored oxide materials.” Optical Materials: X 15: 100167. DOI: 10.1016/j.omx.2022.100167.
- [37] R. Zhang, Q. S. Fu, C. Y. Yin, C. L. Li, X. H. Chen, G. Y. Qian, C. L. Lu, S. L. Yuan, X. J. Zhao, H. Z. Tao. 2018. “Understanding of metal-insulator transition in VO2 based on experimental and theoretical investigations of magnetic features.” Scientific Reports 8: 17093. DOI: 10.1038/s41598-018-35490-5.
- [38] C. Jiang, L. He, Q. Xuan, Y. Liao, J. G. Dai, D. Lei. 2024. “Phase-change VO2-based thermochromic smart windows.” Light: Science & Applications 13: 255. DOI: 10.1038/s41377-024-01560-9.
- [39] Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, P. K. Chu. 2018. “VO2/TiN Plasmonic Thermochromic Smart Coatings for Room- -Temperature Applications.” Advanced Materials 30(10): 1705421. DOI: 10.1002/adma.201705421.
- [40] Y. M. Xie, X. P. Zhao, S. A. Mofid, J. Y. Tan, B. P. Jelle, R. G. Yang. 2021. “Influence of shell materials on the optical performance of VO2 core–shell nanoparticle- -based thermochromic films.” Materials Today Nano 13: 100102. DOI: 10.1016/j.mtnano.2020.100102.
- [41] Z. Fang, S. Tian, B. Li, Q. Liu, B. Liu, X. Zhao, G. Sankar. 2021. “VO2/ZnO bilayer films with enhanced thermochromic property and durability for smart windows.” Applied Surface Science 540(2): 148414. DOI: 10.1016/j.apsusc.2020.148414.
- [42] S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao, P. Jin. 2016. “Thermochromic multilayer films of WO3/VO2/WO3 sandwich structure with enhanced luminous transmittance and durability.” RSC Advances 6: 106435–106442. DOI: 10.1039/C6RA23504B.
- [43] P. Ouyang, J. Yang , Q. Zhong, Y. Yuan, Y. Gao, H. Wang, S. T. Yang. 2024. “Toxicity of VO2 micro/nanoparticles to nitrogen-fixing bacterium Azotobacter vinelandii.” Journal of Hazardous Materials 466: 133553. DOI: 10.1016/j.jhazmat.2024.133553.
- [44] T. Mizutani, H. Takagi, Y. Ueno, T. Horiguchi, K. Yamamura, H. Ogoshi. 1998. „Hydrogen‐bonding‐based thermochromic phenol-amine complexes.” Journal of Physical Organic Chemistry 11(10): 737–742. DOI: 10.1002/(SICI)1099-1395(1998100)11:10<737::AID-POC36>3.0.CO;2-P.
- [45] A. Seeboth, D. Lötzsch. 2002. “Thermochromic polymers.”
- [in] Encyclopedia of Polymer Science and Technology. New York: John Wiley & Sons. DOI: 10.1002/0471440264.pst510.
- [46] Y. Zeng, J. Liu, L. Zhou, X. Deng, W. Yang, X. Yan, Y. Luo, X. Zhu, X. Huang, X. Song, Y. Tang. 2023. “An organic-inorganic hybrid thermochromic ferroelastic with multi-channel switches.” Chinese Chemical Letters 34(9): 108127. DOI: 10.1016/j.cclet.2022.108127.
- [47] Q. Q. Jia, Q. F. Luo, H. F. Ni, C. Y. Su, D. W. Fu, L. Y. Xie, H. F. Lu. 2022. „High-Sensitivity Organic–Inorganic Hybrid Materials with Reversible Thermochromic Property and Dielectric Switching.” Journal of Physical Chemistry C 126(3): 1552–1557. DOI: 10.1021/acs.jpcc.1c10347.
- [48] M. Wan, H. R. Chen, Y. N. Wang, K. Shi, J. Y. Liu, Z.M. Li, S. Y. Ye, J. Y. Li, L. Z. Chen. 2022. “Reversible thermochromism to tune the bandgap of organic–inorganic hybrid materials.” Materials Chemistry Frontiers 6(20): 3094–3101. DOI: 10.1039/D2QM00696K.
- [49] M. Cinquino, C. T. Prontera, A. Giuri, M. Pugliese, R. Giannuzzi, A. Maggiore, D. Altamura, F. Mariano, G. Gigli, C. E. Corcione, C. Giannini, A. Rizzo, L. De Marco, V. Maiorano. 2024. “Thermochromic Printable and Multicolor Polymeric Composite Based on Hybrid Organic–Inorganic Perovskite.” Advanced Materials 36(2): 2307564. DOI: 10.1002/adma.202307564.
- [50] K. R. Schlafmann, M. S. Alahmed, H. M. Pearl, T. J. White. 2024. “Tunable and switchable thermochromism in cholesteric liquid crystalline elastomers.” ACS Applied Materials & Interfaces 16(18): 23780–23787. DOI: 10.1021/acsami.3c18367.
- [51] W. L. Leaw, C. R. Mamat, S. Triwahyono, A. A. Jalil, N. Bidin. 2016. “Liquid crystal physical gel formed by cholesteryl stearate for light scattering display material.” Journal of Colloid and Interface Science 483: 41–48. DOI: 10.1016/j.jcis.2016.08.020.
- [52] J. W. Kim, Y. Oh, S. Lee, S. H. Kim. 2022. „Thermochromic microcapsules containing chiral mesogens enclosed by hydrogel shell for colorimetric temperature reporters.” Advanced Functional Materials 32(9): 2107275. DOI: 10.1002/adfm.202107275.
- [53] A. Seeboth, D. Lotzsch, R. Ruhmann, O. Muehling. 2014. “Thermochromic Polymers - Function by Design.” Chemical Reviews 114(5): 3037–3068. DOI: 10.1021/cr400462e.
- [54] G. Dufresne, J. Bouchard, M. Belletête, G. Durocher, M. Leclerc. 2000. “Thermochromic and solvatochromic conjugated polymers by design.” Macromolecules 33(22): 8252–8257. DOI: 10.1021/ma000650n.
- [55] C. Roux, M. Leclerc. 1994. “Thermochromic properties of polythiophene derivatives: formation of localized and delocalized conformational defects.” Chemistry of Materials 6(5): 620–624. DOI: 10.1021/cm00041a011.
- [56] J. Huo, Z.Hu, G. He, X. Hong, Z. Yang, S. Luo, X. Ye, Y. Li, Y. Zhang, M. Zhang, H. Chen, T. Fan, Y. Zhang, B. Xiong, Z. Wang, Z. Zhu, D. Chen. 2017. „High temperature thermochromic polydiacetylenes: Design and colorimetric properties.” Applied Surface Science 423: 951–956. DOI: 10.1016/j.apsusc.2017.06.198.
- [57] P. Trefonas, J. R. Damewood, R. West, R. D. Miller. 1985. “Organosilane high polymers: thermochromic behavior in solution.” Organometallics 4(7): 1318–1319. DOI: 10.1021/om00126a038.
- [58] P. S. Hariharan, N. S. Venkataramanan, D. Moon, S. P. Anthony. 2015. “Self-reversible mechanochromism and thermochromism of a triphenylamine-based molecule: tunable fluorescence and nanofabrication studies.” Journal of Physical Chemistry C 119(17): 9460–9469. DOI: 10.1021/acs.jpcc.5b00310.
- [59] S. A. Kahani, F. Abdevali. 2016. „Mechanochemical synthesis and characterization of a nickel(II) complex as a reversible thermochromic nanostructure.” RSC Advances 6(6): 5116–5122. DOI: 10.1039/C5RA22606F.
- [60] Y. Zhou, S. Ji, Y. Li, Y. Gao, H. Luo, P. Jin. 2014. „Microemulsion-based synthesis of V1−xWxO2@SiO2 core–shell structures for smart window applications.” Journal of Materials Chemistry C 2(19): 3812–3819. DOI: 10.1039/C3TC32282C.
- [61] T. C. Fang, S. Y. Peng, Y. C. Liao. 2020. “Stretchable polydimethylsiloxane composites with emulsified ionic materials and thermochromic applications.” ACS Omega 5(16): 9458–9464. DOI: 10.1021/acsomega.0c00668.
- [62] M. Okada, M. Kuno, Y. Yamada. 2023. „Fast synthesis of monoclinic VO2 nanoparticles by microwave-assisted hydrothermal method and application to high- -performance thermochromic film.” Solar Energy Materials and Solar Cells 255: 112311. DOI: 10.1016/j.solmat.2023.112311.
- [63] L. Mehta, K. Wadgaonkar, M. Suryawanshi, R. Jagtap. 2019. “Solvent-free microwave- assisted synthesis and characterization of polybenzoxazine as a thermochromic material for smart coatings.” Colloid and Polymer Science 297: 795– 798. DOI: 10.1007/s00396-019-04491-9.
- [64] Z. Wu, J. Xu, Z. Wu, R. Zhao, L. Hou. 2024. “A thermochromic salicylaldehyde Schiff bases derivative with AIE properties due to twisted structure.” Journal of Photochemistry and Photobiology A: Chemistry 453: 115668. DOI: 10.1016/j.jphotochem.2024.115668.
- [65] Ö. Özdemir. 2019. “Synthesis of new luminescent bis-azo-linkage Schiff bases containing amino-phenol and its derivative. Part I: Studying of their tautomeric, acidochromic, thermochromic, ionochromic, and photoluminesence properties.” Journal of Photochemistry and Photobiology A: Chemistry 380: 111868. DOI: 10.1016/j.jphotochem.2019.111868.
- [66] D. K. Nguyen, Q. V. Bach, B. Kim, H. Lee, C. Kang, I. T. Kim. 2019. „Synthesis of Cr-doped Al2O3 by Pechini sol-gel method and its application for reversible thermochromic sensors.” Materials Chemistry and Physics 223: 708–714. DOI: 10.1016/j.matchemphys.2018.11.070.
- [67] H. K. Chen, H. C. Hung, T. C. K. Yang, S. F. Wang. 2004. “The preparation and characterization of transparent nano-sized thermochromic VO2–SiO2 films from the sol-gel process.” Journal of Non-Crystalline Solids 347(1-3): 138–143. DOI: 10.1016/j.jnoncrysol.2004.07.065.
- [68] Y. H. Jung, S. P. Pack, S. Chung. 2018. “Solvothermal synthesis and characterization of highly monodisperse organically functionalized vanadium oxide nanocrystals for thermochromic applications.” Materials Research Bulletin 101: 67–72. DOI: 10.1016/j.materresbull.2018.01.014.
- [69] X. Wu, M. Tang, L. Yuan, J. Li, L. Qi, X. Weng, C. Gu. 2024. “Solvethermal synthesis and thermochromic properties of CaF2@VO2-based core-shell structure composites.” Ceramics International 50(20): 37676–37683. DOI: 10.1016/j.ceramint.2024.07.126.
- [70] E. G. Morales-Espinoza, J. Castrellón-Uribe, M. Fuentes-Pérez, M. E. Nicho. 2020. “Synthesis and characterization of thermochromic thiophene copolymers containing pyrene groups.” Materials Today Communications 24: 101166. DOI: 10.1016/j.mtcomm.2020.101166.
- [71] C. C. Revadekar, S. S. Shin, J. M. Kim, B. J. Park. 2025. “Synthesis of Janus Polydiacetylene Sensor Particles with Thermochromism and Solvatochromism Properties.” Small Structures 6(6): 2400554. DOI: 10.1002/sstr.202400554.
- [72] R. Potai, K. Faisadcha, R. Traiphol, N. Traiphol. 2018. “Controllable thermochromic and phase transition behaviors of polydiacetylene/zinc (II) ion/zinc oxide nanocomposites via photopolymerization: An insight into the molecular level.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 555: 27–36. DOI: 10.1016/j.colsurfa.2018.06.058.
- [73] L. Chen, Y. Zhang, H. Ye, G. Duan, H. Duan, Q. Ge, Z. Wang. 2021. “Color-changeable four-dimensional printing enabled with ultraviolet-curable and thermochromic shape memory polymers.” ACS Applied Materials & Interfaces 13(15): 18120–18127. DOI: 10.1021/acsami.1c02656.
- [74] T. Wang, X. Liu, J. Luo, R. Liu, G. Sun. 2024. “Encapsulation of dyed alkanes with polyurethane microcapsules from interfacial polymerization enables irreversible thermochromic coatings.” ACS Applied Polymer Materials 6(15): 8811–8820. DOI: 10.1021/acsapm.4c00889.
- [75] S. Liu, H. Zhang, X. Zhang, W. Li. 2025. “Reversible thermochromic microencapsulated phase change materials with silane-terminated polyurethane shell.” Journal of Energy Storage 119: 116329. DOI: 10.1016/j.est.2025.116329.
- [76] M. S. Tözüm, S. Alay Aksoy, C. Alkan. 2021. “Manufacturing surface active shell and bisphenol A free thermochromic acrylic microcapsules for textile applications.” International Journal of Energy Research 45(5): 7018–7037. DOI: 10.1002/er.6287.
- [77] J. Zhang, C. Wang, F. Liu, C. Dong. 2022. “Preparation and characterization of the thermochromic microcapsules and temperature-indicating hydrogel.” Journal of Thermal Analysis and Calorimetry 147: 7729–7740. DOI: 10.1007/s10973-021-11082-w.
- [78] X. Du, W. Zhang, N. Han, X. Zhang, W. Li. 2023. “Eco-friendly reversible photochromic epoxy resin microcapsules with strong acid and alkali resistance for energy storage via facile in-situ microencapsulation.” Journal of Energy Storage 60: 106633. DOI: 10.1016/j.est.2023.106633.
- [79] Y. Li, Z. Jiang, F. He, Z. Chen, X. Li, P. Wang, G. He, X. Zhu, W. Yang. 2023. “Reversible thermochromic microcapsules with SiO2 shell for indicating temperature and thermoregulation.” Journal of Energy Storage 72: 108674. DOI: 10.1016/j.est.2023.108674.
- [80] A. Hakami, P. K. Biswas, Y. Emirov, E. K. Stefanakos, S. S. Srinivasan. 2022. “Effect of surfactant on the TiO2 microencapsulation of Thermochromic materials.” International Journal of Energy Research 46(8): 10590–10605. DOI: 10.1002/er.7856.
- [81] Y. Zhang, X. Wang, D. Wu. 2015. “Design and fabrication of dual-functional microcapsules containing phase change material core and zirconium oxide shell with fluorescent characteristics”. Solar Energy Materials and Solar Cells 133: 56–68. DOI: 10.1016/j.solmat.2014.10.035.
- [82] Y. Zhou, R. Duan. 2024. “Leak-proof reversible thermochromic microcapsule phase change materials with high latent thermal storage for thermal management.” ACS Applied Energy Materials 7(14): 5944–5956. DOI: 10.1021/acsaem.4c01282.
- [83] Y. Song, X. Qiu, H. Liu, Y. Han. 2024. “Microencapsulated phase change materials (MicroPCMs) with TiO2-modified natural polymer shell and macrocapsules containing MicroPCMs for thermal energy storage and UV-shielding.” Solar Energy Materials and Solar Cells 271: 112860. DOI: 10.1016/j.solmat.2024.112860.
- [84] N. Phonchai, C. Khanantong, F. Kielar, R. Traiphol, N. Traiphol. 2019. “Low- -temperature reversible thermochromic polydiacetylene/zinc(II)/zinc oxide nanocomposites for colorimetric sensing.” ACS Applied Nano Materials 2(7): 4489–4498. DOI: 10.1021/acsanm.9b00876.
- [85] J. Wang, M. Wu, J. Huang, Y. Wang, X. Miao, Y. Chen, D. Bian, Y. Zhao. 2024. “In situ polymerized self-healing microcapsules as multifunctional fillers toward phosphate ceramic coatings.” ACS Applied Materials & Interfaces 16(20): 26768– 26786. DOI: 10.1021/acsami.4c04115.
- [86] J. Yan, L. Ruan, D. Hu, W. Liu, W. Chen, W. Ma. 2023. “Microencapsulation of phase change materials with a soy oil-based polyurethane shell via pickering emulsion polymerization.” ACS Applied Energy Materials 6(12): 6814–6825. DOI: 10.1021/acsaem.3c01036.
- [87] R. Duczinski, B. B. Polesso, E. Duarte, F. L. Bernard, V. V. Chaban, S. Einloft. 2023. “Separation of CO2/N2 mixtures by new IL/Acrylic polymer microcapsules designed by a one-step suspension-based polymerization encapsulation process.” Journal of Molecular Liquids 385: 122394. DOI: 10.1016/j.molliq.2023.122394.
- [88] L. Chen, W. Zhang, H. Du, X. Ding, L. Li, H. Chen, F. Gao, B. Cui, J. Gao, H. Cui, Y. Yao, Z. Zeng. 2024. “Enhancing safety through the biodegradable pesticide microcapsules produced via melt emulsification and interfacial polymerization.” Chemical Engineering Journal 483: 149407. DOI: 10.1016/j.cej.2024.149407.
- [89] F. Paulo, V. Paula, L. M. Estevinho, L. Santos. 2021. “Propolis microencapsulation by double emulsion solvent evaporation approach: Comparison of different polymeric matrices and extract to polymer ratio.” Food and Bioproducts Processing 127: 408–425. DOI: 10.1016/j.fbp.2021.03.019.
- [90] Y. Tao, Z. Tang, Q. Huang, X. Xu, X. Cheng, G. Zhang, X. Jing, X. Li, J. Liang, D. Granato, Y. Sun. 2024. “Effects of spray drying temperature on physicochemical properties of grapeseed oil microcapsules and the encapsulation efficiency of pterostilbene.” LWT 193: 115779. DOI: 10.1016/j.lwt.2024.115779.
- [91] G. Angelotti, C. Riccucci, G. Di Carlo, M. Pagliaro, R. Ciriminna. 2024. “Towards sustainable pest management of broad scope: sol-gel microencapsulation of Origanum vulgare essential oil.” Journal of Sol-Gel Science and Technology 112: 230–239. DOI: 10.1007/s10971-024-06512-8.
- [92] Q. Meng, H. Wang, Y. Zhang, X. Huang, Q. Ke, X. Kou. 2025. “Vanillin strengthened complex coacervation behavior between gelatin and sodium carboxymethyl cellulose endowed improved mechanical properties of microcapsules.” International Journal of Biological Macromolecules 306(3): 141386. DOI: 10.1016/j.ijbiomac.2025.141386.
- [93] F. Liu, R. Su, Y. Ji. 2025. “Preparation of hydrophobic drug microcapsules via an intensified supercritical extraction of emulsion method: Phase behavior investigation and emulsion formula regulation.” Advanced Powder Technology 36(6): 104893. DOI:10.1016/j.apt.2025.104893.
- [94] M. Basso, E. Colusso, F. Sgarbossam, Y. Chen, E. Napolitani, J. Jasieniak, A. Martucci. 2024. “Ultrafast Laser Crystallization Dynamics of Thermochromic VO2 Thin Films by Simple Moisture-Assisted Sol–Gel.” Chemistry of Materials 36(11): 5508- 5520. DOI: 10.1021/acs.chemmater.4c00460.
- [95] L. Yuan, Z. Hu, C. Hou, X. Meng. 2021. “In-Situ thermochromic mechanism of Spin-Coated VO2 film.” Applied Surface Science 564: 150441. DOI: 10.1016/j.apsusc.2021.150441.
- [96] D. Malarde, J. M. Powell, R. Quesada-Cabrera, R. L. Wilson, C. J. Carmalt, G. Sankar, I. P. Parkin, R. G. Palgrave. 2017. “Optimized atmospheric-pressure chemical vapor deposition thermochromic VO2 thin films for intelligent window applications.” ACS omega 2(3): 1040–1046. DOI: 10.1021/acsomega.7b00042.
- [97] E. K. Barimah, A. Boontan, D. P. Steenson, G. Jose. 2022. “Infrared optical properties modulation of VO2 thin film fabricated by ultrafast pulsed laser deposition for thermochromic smart window applications.” Scientific Reports 12(1): 11421. DOI: 10.1038/s41598-022-15439-5.
- [98] K. T. Khairy, Y. Song, J. H. Yoon, J. Montero, L. Österlund, S. Kim, P. Song. 2023. “Thermochromic properties of vanadium oxide thin films prepared by reactive magnetron sputtering at different oxygen concentrations.” Vacuum 210: 111887. DOI: 10.1016/j.vacuum.2023.111887.
- [99] P. Pan, X. Yan, W. Zhao. 2022. “Effect of coating process of photochromic and thermochromic composite microcapsules on coating properties for basswood.” Coatings 12(9): 1246. DOI: 10.3390/coatings12091246.
- [100] Y. Han, X. Yan, W. Zhao. 2022. “Effect of thermochromic and photochromic microcapsules on the surface coating properties for metal substrates.” Coatings 12(11): 1642. DOI: 10.3390/coatings12111642.
- [101] X. Yan, W. Zhao, L. Wang. 2021. “Preparation and performance of thermochromic and self-repairing dual function paint film with lac resin microcapsules and fluorane microcapsules.” Polymers 13(18): 3109. DOI: 10.3390/polym13183109.
- [102] X. Yan, W. Zhao, L. Wang. 2021. “Mechanism of thermochromic and self- -repairing of waterborne wood coatings by synergistic action of waterborne acrylic microcapsules and fluorane microcapsules.” Polymers 14(1): 56. DOI: 10.3390/polym14010056.
- [103] G. Pérez, V. R. Allegro, M. Corroto, A. Pons, A. Guerrero. 2018. “Smart reversible thermochromic mortar for improvement of energy efficiency in buildings.” Construction and Building Materials 186: 884–891. DOI: 10.1016/j.conbuildmat.2018.07.246.
- [104] A. Can, O. Gencel, A. Sarı, G. Hekimoğlu, A. Ustaoglu. 2025. “Accelerating weathering and thermal regulation performance of window frame applied with microencapsulated phase change thermochromic pigment coated wood material.” Journal of Building Engineering 100:111718. DOI: 10.1016/j.jobe.2024.111718.
- [105] U. Berardi, M. Garai, T. Morselli. 2020. “Preparation and assessment of the potential energy savings of thermochromic and cool coatings considering inter-building effects.” Solar Energy 209: 493–504. DOI: 10.1016/j.solener.2020.09.015.
- [106] A. Kitsopoulou, E. Bellos, C. Sammoutos, P Lykas, M. G. Vrachopoulos, C. Tzivanidis. 2024. “A detailed investigation of thermochromic dye-based roof coatings for Greek climatic conditions.” Journal of Building Engineering 84:108570. DOI: 10.1016/j.jobe.2024.108570.
- [107] H. Li, X. Zhang, L. Tian, M. Jia, N. Xie, Y. Han, X. Yuan, L. Kelei, S. Qian. 2023. “Experimental investigation on performance of composite thermochromic and ice-melting coatings for dynamic pavement temperature control.” Construction and Building Materials 409: 133787. DOI: 10.1016/j.conbuildmat. 2023.133787.
- [108] S. Soudian, U. Berardi, N. Laschuk. 2020. “Development and thermal-optical characterization of a cementitious plaster with phase change materials and thermochromic paint.” Solar Energy 205: 282–291. DOI: 10.1016/j.solener.2020.05.015.
- [109] M. Calovi, A. Zanardi, S. Rossi. 2023. “Improvement of the thermal efficiency of organic roof-coatings through design aimed at increasing the durability of thermochromic pigments.” Progress in Organic Coatings 185: 107928. DOI: 10.1016/j.porgcoat.2023.107928.
- [110] J. Kumar, K. Akhila, P. Kumar, R. K. Deshmukh, K. K. Gaikwad. 2023. “Novel temperature-sensitive label based on thermochromic ink for hot food packaging and serving applications.” Journal of Thermal Analysis and Calorimetry 148(13): 6061–6069. DOI: 10.1007/s10973-023-12147-8.
- [111] H. Li, M. Zhu, F. Tian, W. Hua, J. Guo, C. Wang. 2021. “Polychrome photonic crystal stickers with thermochromic switchable colors for anti-counterfeiting and information encryption.” Chemical Engineering Journal 426: 130683. DOI: 10.1016/j.cej.2021.130683.
- [112] Y. H. Kim, C. W. Park, J. S. Kim, D. S. Choi, Y. P. Hong, S. H. Park, J. Y. Son. 2022. “Smart packaging temperature indicator based on encapsulated thermochromic material for the optimal watermelon taste.” Journal of Food Measurement and Characterization 16(3): 2347–2355. DOI: 10.1007/s11694-022-01342-0.
- [113] S. Jamnicki Hanzer, R. Kulčar, M. Vukoje, A. Marošević Dolovski. 2023. “Assessment of Thermochromic Packaging Prints’ Resistance to UV Radiation and Various Chemical Agents.” Polymers 15(5): 1208. DOI: 10.3390/polym15051208.
- [114] T. Tomašegović, S. Mahović Poljaček, I. Jurišić, D. Donevski. 2025. “Fine-Tuning Flexographic Ink’s Surface Properties and Providing Anti-Counterfeit Potential via the Addition of TiO2 and ZnO Nanoparticles.” Micro 5(2): 20. DOI: 10.3390/micro5020020.
- [115] M. Strižić Jakovljević, M. Klanjšek Gunde, T. Cigula, G. Lavrič. 2025. “Dynamic Colour Changes in Thermochromic Liquid Crystal Inks: Compatibility with Bacterial Nanocellulose for Sustainable Packaging Solutions.” Crystals 15(3): 283. DOI: 10.3390/cryst15030283.
- [116] M. Morais, J. Figueira, M. C. Corvo, M. Peixoto, D. Oliveira, A. Gonçalves, E. Fortunato, R. Martins, E. Carlos, J. V. Pinto. 2025. “Flexographic Printed Flexible Thermochromic Stickers for Smart Sensing Applications.” Advanced Materials Interfaces 12(11): 2400972. DOI: 10.1002/admi.202400972.
- [117] F. Zhou, Y. Zhang, H. Zong, G. Zhou. 2025. “Photochromic and thermochromic inks based on supramolecular complexes of viologens and cyclodextrin for printable anticounterfeiting applications.” Chemical Engineering Journal 507: 160650. DOI: 10.1016/j.cej.2025.160650.
- [118] C. Breheny, D. M. Colbert, G. Bezerra, J. Geever, L. M. Geever. 2025. “Towards Sustainable Food Packaging: Mechanical Recycling Effects on Thermochromic Polymers Performance.” Polymers 17(8): 1042. DOI: 10.3390/polym17081042.
- [119] Y. Guan, L. Zhang, D. Wang, J. L. West, S. Fu. 2018. “Preparation of thermochromic liquid crystal microcapsules for intelligent functional fiber.” Materials & Design 147: 28–34. DOI: 10.1016/j.matdes.2018.03.030.
- [120] A. Potuck, S. Meyers, A. Levitt, E. Beaudette, H. Xiao, C. C. Chu, H. Park, H. 2016. “Development of thermochromic pigment based sportswear for detection of physical exhaustion.” Fashion Practice 8(2): 279–295. DOI:10.1080/17569370.2016.1216990.
- [121] Y. Zhang, Z. Hu, H. Xiang, G. Zhai, M. Zhu. 2019. “Fabrication of visual textile temperature indicators based on reversible thermochromic fibers.” Dyes and Pigments 162: 705–711. DOI: 10.1016/j.dyepig.2018.11.007.
- [122] W. Zhang, L. Fei, J. Zhang, K. Chen, Y. Yin, C. Wang. 2020. “Durable and tunable temperature responsive silk fabricated with reactive thermochromic pigments.” Progress in Organic Coatings 147: 105697 .DOI: 10.1016/j.porgcoat.2020.105697.
- [123] Q. Shi, M. Li, K. Gong, Z. Zhao, D. Liu, X. Zhou. 2025. “Stable low temperature reversible thermochromic indicators for vaccine storage and transportation.” Dyes and Pigments 241: 112894. DOI: 10.1016/j.dyepig.2025.112894.
- [124] Q. Chen, Y. Chen, Q. Liu, S. Yuan, H. Yu, W. Yao. 2025. “Development of disposable paper-based smart visual labels with thermochromic materials for cold chain temperature (-18° C) monitoring.” Journal of Food Engineering 402: 112692. DOI: 10.1016/j.jfoodeng.2025.112692.
- [125] H. S. Jeon, J. H. Kim, M. B. Jun, Y. H. Jeong. 2021. “Fabrication of thermochromic membrane and its characteristics for fever detection.” Materials 14(13): 3460. DOI: 10.3390/ma14133460.
- [126] Y. Rosalina, E. Warsiki, A. M. Fauzi. 2022. “The potential of anthocyanin from red banana peel as natural dye in smart packaging development.” IOP Conference Series: Earth and Environmental Science 1063(1): 012019. DOI: 10.1088/1755-1315/1063/1/012019.
- [127] M. M. Khalaf, M. Gouda, T. A. Hamdalla, M. F. Abou Taleb, H. M. Abd El‐Lateef. 2024. “Preparation of thermochromic ink from anthocyanidin‐encapsulated alginate nanoparticles for anticounterfeiting applications.” Luminescence 39(7): e4842. DOI: 10.1002/bio.4842.
- [128] A. M. Aldawsari, N. D. Alkhathami, A. M. Al‐bonayan, H. Alessa, K. M. Alkhamis, H. M. Abumelha, N. M. El‐Metwaly. 2023. “Preparation of novel authentication film by screen printing of anthocyanin biomolecular extract: Thermochromism and vapochromism.” Luminescence 38(5): 613–624. DOI: 10.1002/bio.4487.
- [129] K. F. Alshammari, A. F. Alrefaei, A. Sayqal, A. Almahri, S. F. Ibarhiam, A. T. Mogharbel, N. M. El-Metwaly. 2022. “Development of thermochromic ink using the anthocyanidin-based red-cabbage extract for anticounterfeiting applications.” ACS Omega 7(51): 48215–48223. DOI: 10.1021/acsomega.2c06314.
- [130] A. T. Mogharbel, G. R. Ashour, K. Alkhamis, A. M. Al-Bonayan, M. M. Abualnaja, J. Qurban, H. A. Katouah, N. M. El-Metwaly. 2023. “Preparation of self-healing anthocyanidin-containing thermochromic alginate ink for authentication purposes.” ACS Omega 9(1):1562–1572. DOI: 10.1021/acsomega.3c07874.
- [131] M. Raji, H. Essabir, R. Bouhfid, A. el kacem Qaiss. 2024. “Edible thermochromic beads from flavonoid, fatty acid, and lecithin for smart packaging.” Food Chemistry 454: 139698. DOI: 10.1016/j.foodchem.2024.139698.
- [132] B. Kopyciński, A. Duda, E. Langer, G. Kamińska-Bach. 2024. ”Color photostability assessment of ultrasound-assisted extracts from European blueberry (Vaccinium myrtillus L.) obtained with the use of non-toxic solvents.” Drewno: Prace Naukowe, Doniesienia, Komunikaty 67(213): 00019. DOI: 10.53502/wood-187625.
- [133] B. Kopyciński, A. Duda. 2022. “Anthocyanins – Corrosion Inhibitors Straight from Nature.” Ochrona przed Korozją 65(7): 216–221. DOI: 10.15199/40.2022.7.2.
- [134] Y. Ma, B. Zhu, K. Wu. 2000. “Preparation of reversible thermochromic building coatings and their properties.” Journal of Coatings Technology 72(911): 67–71. DOI: 10.1007/BF02720527.
- [135] H. Oda. 2008. “Photostabilization of organic thermochromic pigments: Action of benzotriazole type UV absorbers bearing an amphoteric counter- -ion moiety on the light fastness of color formers.” Dyes and Pigments 76(1): 270–276. DOI: 10.1016/j.dyepig.2006.08.038.
- [136] A. V. de Souza, A. Valério, J. L. O. Buske, M. E. Benedet, V. Pistor, R. A. F. Machado. 2016. “Influence of stabilizer additives on thermochromic coating for temperature monitoring.” Journal of Coatings Technology and Research 13: 1139–1144. DOI: 10.1007/s11998-016-9811-7.
- [137] T. Feczkó, M. Kovács, B. Voncina. 2012. “Improvement of fatigue resistance of spirooxazine in ethyl cellulose and poly (methyl methacrylate) nanoparticles using a hindered amine light stabilizer.“ Journal of Photochemistry and Photobiology A: Chemistry 247: 1–7. DOI: 10.1016/j.jphotochem.2012.08.001.
- [138] https://www.mordorintelligence.com/industry-reports/thermochromic- -pigments-market[access: 09.08.2023].
- [139] https://www.alliedmarketresearch.com/thermochromic-pigments-market-A06536[access: 09.08.2023].
- [140] https://www.acumenresearchandconsulting.com/thermochromic-pigments-market[access: 09.08.2023].
- [141] https://dataintelo.com/report/global-thermochromic-pigment-market[access: 10.08.2023].
- [142] https://straitsresearch.com/report/thermochromic-pigments-market[access: 10.08.2023].
- [143] https://www.zionmarketresearch.com/report/thermochromic-pigments-market[access: 10.08.2023].
- [144] https://www.hali-pigment.com/e_productshow/?21-Thermochromic-pigment-21.html[access: 10.06.2025].
- [145] https://qcrsolutions.com/wp-content/uploads/2018/10/Thermochromic-Pigments-TDS-QCR-Solutions-Corp-NL.pdf[access: 10.06.2025].
- [146] https://findmydata.cloud/uploads/pdf/sfxc-free-flowing-powder-tds.pdf[access: 11.06.2025].
- [147] http://www.smarol.com/Thermochromic-Pigment.html [access: 11.06.2025].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5d0399a-9d40-4921-8c7b-4c0be85541d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.