PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A New Energetic Binder: Glycidyl Nitramine Polymer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new energetic glycidyl-based polymer containing nitramine groups (glycidyl nitramine polymer, GNAP) was synthesized using glycidyl azide polymer (GAP) as the starting material. The synthesis involved Staudinger azide-amine conversion, followed by carbamate protection of the amino group, nitration with nitric acid (100%) and trifluoroacetic anhydride and was concluded by deprotection with aqueous ammonia. The products obtained were characterized by elemental analysis and vibrational spectroscopy (IR). The energetic properties of GNAP were determined using bomb calorimetric measurements and calculated with the EXPLO5 V6.02 computer code, showing better values regarding the energy of explosion (ΔEU = −4813 kJ kg−1), the detonation velocity (VDet = 7165 m•s−1), as well as the detonation pressure (pCJ = 176 kbar), than the comparable polymers GAP and polyGLYN. The explosion properties were tested by impact sensitivity (IS), friction sensitivity (FS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and electrostatic discharge (ESD) equipment. The results revealed GNAP to be insensitive towards friction and electrostatic discharge, less sensitive towards impact (40 J) and a decomposition temperature (170 °C) in the range of polyGLYN.
Słowa kluczowe
Rocznik
Strony
289--300
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Department Chemistry, Energetic Materials Research, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
  • Department Chemistry, Energetic Materials Research, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
  • Department Chemistry, Energetic Materials Research, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
autor
  • Department Chemistry, Energetic Materials Research, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
Bibliografia
  • [1] Ang H.G., Pisharath S., Energetic Polymers − Binders and Plasticisers for Enhancing Performance, Wiley-VCH Verlag, Weinheim, 2012, pp. 1-7; ISBN 978-3-527-33155-0.
  • [2] Agrawal J.P., High Energetic Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH Verlag, Weinheim, 2009, p. 229; ISBN 978-3-527-32610-5.
  • [3] a) Cossu C., Heuzey M.-C., Lussier L.-S., Dubois C., Early Development of a Biodegradable Energetic Elastomer, J. Appl. Polym. Sci., 2011, 119(6), 3645-3657; b) Betzler F.M., Klapötke T.M., Sproll S.M., Synthesis of Glycidyl-5-(carboxyethyl-1H-tetrazole)polymer and 1,2-Bis(5-carboxyethyl-1H-tetrazolyl) ethane as Polymeric Precursor, Eur. J. Org. Chem., 2013, 2013(3), 509-514; c) Klapötke T.M., Sproll S.M., Investigation of Nitrogen-rich Energetic Polymers Based on Alkylbridged Bis-(1-methyl-tetrazolylhydrazines), J. Polym. Sci. Pol. Chem., 2010, 48(1), 122-127; d) Bellamy A.J., King D.S., Golding P., Synthesis of Energetic Polymers by the Introduction of Energetic Groups onto Polymeric Primary and Secondary Amines, Propellants Explos. Pyrotech., 2004, 29(3, 509-514; e) Provatas A., Energetic Polymers and Plasticisers for Explosive Formulations − A Review of Recent Advances, Report DSTO-TR-966, 2000.
  • [4] Blomquist H.R., Gas generating material for vehicle occupant protection device, US Patent 6802533, 2004.
  • [5] NATO Standardization Agreement (STANAG) on Explosives, Impact Sensitivity Tests, No. 4489, 1st ed., Brussels, 1999.
  • [6] NATO Standardization Agreement (STANAG) on Explosives, Friction Sensitivity Tests, No. 4487, 1st ed., Brussels, 2002.
  • [7] a) WIWEB-Standardarbeitsanweisung 4-5.1.02, Ermittlung der Explosionsgefährlichkeit, hier der Schlagempfindlichkeit mit dem Fallhammer, Erding, 2002; b) WIWEB-Standardarbeitsanweisung 4-5.1.03, Ermittlung der Explosionsgefährlichkeit oder der Reibeempfindlichkeit mit dem Reibeapparat, Erding, 2002.
  • [8] http://www.bam.de (accessed 02.07.2015)
  • [9] http://www.ozm.cz/en/sensitivity-tests/esd-2008a-small-scale-electrostatic-sparksensiti-vity-test/ (accessed 02.07.2015)
  • [10] Staudinger H., Meyer J., New Organic Compounds of Phosphorous. III. Phosphinemethylene Derivatives and Phosphinimines, Helv. Chim. Acta, 1919, 2, 635-646.
  • [11] Hesse M., Meier H., Zeeh B., Spektroskopische Methoden in der Organischen Chemie, 7th ed., Thieme Verlag, Stuttgart, 2005, pp. 33-67; ISBN 978-3-13-576107-7.
  • [12] Siguenza C., Galera P., Otero-Aenlle E., Vibrational Study of some Alkylamine Hydrochlorides, Spectrochim. Acta, 1980, 37(6), 459-460.
  • [13] Meyer R., Köhler J., Homburg A., Explosives, 6th ed., Wiley-VCH Verlag, Weinheim, 2007, p. 151; ISBN 978-3-527-31656-4.
  • [14] Provatas A., Characterisation and Polymerisations Studies of Energetic Binders, Report DSTO-TR-1171, 2001.
  • [15] Klapötke T.M., Stein M., Stierstorfer J., Salts of 1H-Tetrazole − Synthesis, Characterization and Properties, Z. Anorg. Allg. Chem., 2008, 634(10), 1711-1723.
  • [16] a) Wiberg E., Wiberg N., Lehrbuch der Anorganischen Chemie, 101. ed., de Gruyter Verlag, Berlin, New York, 1995; ISBN 3-11-012641-9; b) http://webbook.nist.gov/ chemistry (accessed 02.07.2015).
  • [17] a) Sućeska M., Calculation of the Detonation Properties of C-H-N-O Explosives, Propellants Explos. Pyrotech., 1991, 16(4), 197-202; b) Sućeska M., EXPLO5 V.6.02.; Zagreb (Croatia), 2013.
  • [18] Diaz E., Heats of Combustion and Formation of New Energetic Thermoplastic Elastomers Based on GAP, PolyNIMMO and PolyGLYN, Propellants Explos. Pyrotech., 2003, 28(3), 101-106.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5cf2ee3-7063-4b64-89da-2c0152999a83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.