PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Metallurgical Industry Emissions on the Development of Selected Components of Atmospheric Deposition in the Košice Area (Slovakia)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ emisji przemysłu metalurgicznego na rozwój wybranych składników depozycji atmosferycznej na terenie Koszyc (Słowacja)
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to assess the impact of emissions and their decrease on the level of environmental burden through the study of selected atmospheric deposition parameters in the area with the dominant source of emissions from the iron and steel production complex. Total atmospheric deposition (AD), i.e., j. both wet and dry, was sampled from eleven sampling points at a distance of 3 to 16 kilometers from the ironworks complex. AD fluxes of selected elements (Fe, Al, Mn, Zn, Pb, Cu, Cr, Cd, As) and dust particles (PM) were evaluated in relation to the amount of emissions from the results of long-term AD monitoring (2009 – 2022). The analysis shows the dominant influence of emissions from the metallurgical industry on the deposition fluxes of most of the monitored parameters and, thus, on the environmental burden of the area. The emissions have a decisive impact on the AD of manganese, iron, chromium, particulate matter, zinc, and aluminum, but also, to a lesser extent, on the AD of the other monitored elements. Correlation analysis confirmed a statistically significant dependence between the amount of emissions and the mass fluxes of AD for iron, zinc, manganese, and chromium for most of the sampling sites. The potential of immission load of the urban environment of Košice by emissions from the metallurgical industry is significantly higher in the winter due to local specific meteorological conditions. The more than sevenfold decrease in emissions significantly affected the AD of most of the monitored parameters, but their decrease was not so significant except for the AD of lead. The average AD of the elements strongly associated with ironworks emission sources, namely iron, manganese, chromium, and zinc, decreased approximately twofold. The amount of emissions is only one of several factors that affect the quantity of fluxes of the monitored AD parameters. In addition to seasonal factors, local meteorological, climatic, orographic, and other local conditions, and specifics also play an essential role.
Rocznik
Strony
405--415
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wykr.
Twórcy
  • Institute of Geotechnics of Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
  • Institute of Geotechnics of Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
  • Institute of Geotechnics of Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
  • Institute of Geotechnics of Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
Bibliografia
  • 1. A. C. Mateos, A. C. Amarillo, H. A. Carreras, and C. M. González, "Land use and air quality in urban environments: Human health risk assessment due to inhalation of airborne particles." Environ. Res. 161, 370-380 (2018).
  • 2. X. Querol, M. Viana, A. Alastuey, F. Amato et al., "Source origin of trace elements in PM from regional background. urban and industrial sites of Spain." Atmos. Environ. 41, 7219-7231 (2007).
  • 3. D. Jandacka and D. Durcanska, “Seasonal Variation, Chemical Composition, and PMF-Derived Sources Identification of Traffic-Related PM1, PM2.5, and PM2.5–10 in the Air Quality Management Region of Žilina, Slovakia”, Int. J. Environ. Res. Public Health 18, 10191 (2021).
  • 4. A. Hernandez-Pellon and I. Fernandez-Olmo, “Airborne concentration and deposition of trace metals and metalloids in an urban area downwind of a manganese alloy plant.“ Atmos. Pollut. Res., 10, 712-721, (2019).
  • 5. D. S. Bisquert, J. Matías, C. Penas and G. G. Fernandez, “The impact of atmospheric dust deposition and trace elements levels on the villages surrounding the former mining areas in a semi-arid environment (SE Spain)” Atmos. Environ. 152, 256-269 (2017)
  • 6. J. Gunawardena, P. Egodawatta, G.A. Ayoko and A. Goonetilleke, “Atmospheric deposition as a source of heavy metals in urban stormwater”, Atmos. Environ. 68, 235-242 (2013).
  • 7. National Emission Information System, Available at: http://www.air.sk, (2023).
  • 8. Enviroportal.sk, Available at https://www.enviroportal.sk/eia/dokument/188671 (2023)
  • 9. J. Hančuľák, T. Špaldon and O. Šestinová, “Selected Characteristics of the Atmospheric Deposition in the Area of Košice.” Inzynieria Miner. 45, 2, 45-50, (2020).
  • 10. J. Hančuľák, O. Šestinová and L. Findoráková, “Characteristics and Seasonal Variations of Atmospheric Deposition of Selected Elements in the Urban and Industrial Environment of Košice (Slovakia)“ IOP Conf. Ser.: Earth Environ. Sci. 906 012100, (2021).
  • 11. Z. Mijić, A. Stojić, M. Perišić, et al., “Seasonal variability and source apportionment of metals in the atmospheric deposition in Belgrade.” Atmos. Environ., 44, 3630-3637 (2010).
  • 12. M. Kara, Y. Dumanoglu, H. Altiok, et al., “Seasonal and spatial variations of atmospheric trace elemental deposition.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5cef218-f575-406a-8e47-b95a20815de3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.