PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cooperation between the fishery sector and science: CTD probe measurements during fishing catches on the feeding grounds of herring (Culpea harengus) and sprat (Sprattus sprattus) in the south-eastern part of the Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
282 CTD probe measurements were analysed for the parameters of temperature, salinity, depth and oxygen saturation of the water column. These measurements were taken during commercial pelagic fishing for herring (Clupea harengus) and sprat (Sprattus sprattus). These species are currently the main target of commercial fishing in the Baltic Sea. Research was carried out throughout the years 2018–2022 in the south-eastern Baltic Sea, mainly in the Gdańsk Deep, mostly during the daytime. The main factor that influenced both, fishing strategy and the increase in catch per unit effort throughout each year, was temperature. Regardless of the season, the most frequent temperature measured was around 5.8°C during fishing, and 5°C in the most abundant winter season. This is the value occurring within the boundaries of the formation of the thermocline and the hypolimnion layer in the Baltic Sea. The formed shoals of fish moved dynamically with this layer in the daytime and occurred throughout the year at various depths in a range of up to 65.7 m. A stronger reaction to temperature changes was also observed for sprat, which is the most exploited fish in the Baltic Sea. This species was observed to be more numerous in the deeper layers of the water column and at lower temperatures than herring. In the winter, shoals of fish were observed at the level of the halocline, which may be strongly related to the presence of a preferred optimal food base in this season.
Czasopismo
Rocznik
Strony
167--179
Opis fizyczny
Bibliogr. 65 poz., map., rys., tab., wykr.
Twórcy
  • Gdynia Maritime University, Gdańsk, Poland
  • Gdynia Maritime University, Gdańsk, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Gdynia Maritime University, Gdańsk, Poland
Bibliografia
  • 1. Akimova, A., Núñez-Riboni, I., Kempf, A., Taylor, M.H., 2016. Spatially-Resolved Influence of Temperature and Salinity on Stock and Recruitment Variability of Commercially Important Fishes in the North Sea. PLoS ONE 11 (9), e0161917. https://doi.org/10.1371/journal.pone.0161917
  • 2. Alder, J., Campbell, B., Karpouzi, V., Kaschner, K., Pauly, D., 2008. Forage fish: From ecosystems to markets. Annu. Rev. Env. Resour. 33, 153-166. https://doi.org/10.1146/annurev.environ.33.020807.143204
  • 3. Almatar, S.M., 1984. Effects of acute changes in temperature and salinity on the oxygen uptake of larvae of herring (Clupea harengus) and plaice (Pleuronectes platessa). Mar. Biol. 80 (2). https://doi.org/10.1007/BF02180178
  • 4. Andersen, N.G., Lundgren, B., Neuenfeldt, S., Beyer, J.E., 2017. Diel vertical interactions between Atlantic cod Gadus morhua and sprat Sprattus sprattus in a stratified water column. Mar. Ecol. Prog. Ser. 583, 195-209. https://doi.org/10.3354/meps12319
  • 5. Arrhenius, F., Hansson, S., 1993. Food consumption of larval, young and adult herring and sprat in the Baltic Sea. Mar. Ecol. Prog. Ser. 96 (2), 125-137. https://doi.org/10.3354/meps096125
  • 6. Bauer, B., Horbowy, J., Rahikainen, M., Kulatska, N., Müller-Karulis, B., Tomczak, M.T., Bartolino, V., 2019. Model uncertainty and simulated multispecies fisheries management advice in the Baltic Sea. PLoS ONE 14 (1), e0211320. https://doi.org/10.1371/journal.pone.0211320
  • 7. Becker, R.A., Chambers, J.M., Wilks, A.R., 2018. The New S Language. The New S Language. Chapman and Hall/CRC. https://doi.org/10.1201/9781351074988
  • 8. Cardinale, M., Casini, M., Arrhenius, F., 2002. The influence of biotic and abiotic factors on the growth of sprat (Sprattus sprattus) in the Baltic Sea. Aquat. Living Resour. 15 (5), 273-281. https://doi.org/10.1016/S0990-7440(02)01188-9
  • 9. Cardinale, M., Casini, M., Arrhenius, F., Håkansson, N., 2003. Diel spatial distribution and feeding activity of herring (Clupea harengus) and sprat (Sprattus sprattus) in the Baltic Sea. Aquat. Living Resour. 16 (3), 283-292. https://doi.org/10.1016/S0990-7440(03)00007-X
  • 10. Casini, M., Cardinale, M., Arrhenius, F., 2004. Feeding preferences of herring (Clupea harengus) and sprat (Sprattus sprattus) in the southern Baltic Sea. ICES J. Mar. Sci. 61 (8), 1267-1277. https://doi.org/10.1016/j.icesjms.2003.12.011
  • 11. Chambers, J.M., Hastie, T.J., 2018. Statistical Models. In: Statistical Models in S. Routledge, 13-44. https://doi.org/10.1201/9780203738535-2
  • 12. Coombs, S.H., Fosh, C.A., Keen, M.A., 1985. The buoyancy and vertical distribution of eggs of sprat (Sprattus sprattus) and pilchard (Sardina pilchardus). J. Mar. Biol. Assoc. UK 65 (2). https://doi.org/10.1017/S0025315400050542
  • 13. Dargahi, B., Kolluru, V., Cvetkovic, V., 2017. Multi-Layered Stratification in the Baltic Sea: Insight from a Modeling Study with Reference to Environmental Conditions. J. Mar. Sci. Eng. 5 (1), 2. https://doi.org/10.3390/JMSE5010002
  • 14. Dziaduch, D., 2011. Diet composition of herring (Clupea harengus L.) and cod (Gadus morhua L.) in the southern Baltic sea in 2007 and 2008. Oceanol. Hydrobiol. St. 40 (4), 96-109. https://doi.org/10.2478/s13545-011-0046-z
  • 15. Eero, M., Vinther, M., Haslob, H., Huwer, B., Casini, M., Storr-Paulsen, M., Köster, F.W., 2012. Spatial management of marine resources can enhance the recovery of predators and avoid local depletion of forage fish. Conserv. Lett. 5 (6), 486-492. https://doi.org/10.1111/j.1755-263X.2012.00266.x
  • 16. Figus, E., Carothers, C., Beaudreau, A.H., 2017. Using local ecological knowledge to inform fisheries assessment: Measuring agreement among Polish fishermen about the abundance and condition of Baltic cod (Gadus morhua). ICES J. Mar. Sci. 74 (8). https://doi.org/10.1093/icesjms/fsx061
  • 17. Freitas, C., Villegas-Ríos, D., Moland, E., Olsen, E.M., 2021. Sea temperature effects on depth use and habitat selection in a marine fish community. J. Anim. Ecol. 90 (7), 1787-1800. https://doi.org/10.1111/1365-2656.13497
  • 18. Fulford, J.M., Davies, W.J., Garcia, L., 2005. Field comparison of optical and clark cell dissolved-oxygen sensors. World Water Congress 2005: Impacts of Global Climate Change — Proc. 2005 World Water Environ. Res. Congress. https://doi.org/10.1061/40792(173)312
  • 19. Hansson, S., Larsson, U., Johansson, S., 1990. Selective predation by herring and mysids, and zooplankton community structure in a Baltic sea coastal area. J. Plankton Res. 12 (5), 1099-1116. https://doi.org/10.1093/plankt/12.5.1099
  • 20. Harvey, C.J., Cox, S.P., Essington, T.E., Hansson, S., Kitchell, J.F., 2003. An ecosystem model of food web and fisheries interactions in the Baltic Sea. ICES J. Mar. Sci. 60 (5). https://doi.org/10.1016/S1054-3139(03)00098-5
  • 21. Holland, M.M., Everett, J.D., Cox, M.J., Doblin, M.A., Suthers, I.M., 2021. Pelagic forage fish distribution in a dynamic shelf ecosystem — Thermal demands and zooplankton prey distribution. Estuar. Coast. Shelf. S. 249. https://doi.org/10.1016/j.ecss.2020.107074
  • 22. Holliday, F.G.T., Blaxter, J.H.S., Lasker, R., 1964. Oxygen Uptake of Developing Eggs and Larvae of the Herring (Clupea Harengus). J. Mar. Biol. Assoc. UK 44 (3). https://doi.org/10.1017/S0025315400027880
  • 23. Horbowy, J., 1997. Growth of the Baltic herring as a function of stock density and food resources. Acta Ichthyol. Piscat. 1, 27-39. https://doi.org/10.3750/AIP1997.27.1.02
  • 24. Ibáñez-Tejero, L., Ladah, L.B., Sánchez-Velasco, L., Barton, E.D., Filonov, A., 2018. Vertical distribution of zooplankton biomass during internal tidal forcing under mesoscale conditions of upwelling and relaxation. Cont. Shelf Res. 171. https://doi.org/10.1016/j.csr.2018.10.003ICES, 2010. Advice 2010. Book, 8 8.4.4.
  • 25. ICES, 2018. Baltic Sea Ecoregion — Ecosystem overview. ICES Ecosystem Overviews 2.
  • 26. ICES, 2021. Cod (Gadus morhua) in subdivisions 24-32, eastern Baltic stock (eastern Baltic Sea). In: Report ICES Advisory Committee, 2023. ICES Advice 2023, cod.27.24-32. https://doi.org/10.17895/ices.advice.21820497
  • 27. ICES, 2022. Baltic Fisheries Assessment Working Group (WGBFAS).
  • 28. ICES Scientific Rep. 4(44). https://doi.org/10.17895/ICES.PUB.19793014.V2
  • 29. ICES Advisory Committee, 2019. ICES Fisheries overviews Baltic Sea Ecoregion 4.2 Baltic Sea Ecoregion — Fisheries overview. ICES Fish. Rep.
  • 30. Janecki, M., Dybowski, D., Rak, D., Dzierzbicka-Glowacka, L., 2022. A New Method for Thermocline and Halocline Depth Determination at Shallow Seas. J Phys. Oceanogr. 1. https://doi.org/10.1175/jpo-d-22-0008.1
  • 31. Karaseva, E.M., Ivanovich, V.M., 2010. Vertical distribution of eggs and larvae of the Baltic Sprat Sprattus sprattus balticus (Clupeidae) in relation to seasonal and diurnal variation. J. Ichthyol. 50 (3). https://doi.org/10.1134/S0032945210030069
  • 32. Kim, T.K., 2017. Understanding one-way anova using conceptual figures. Korean J. Anesthesiology 70 (1). https://doi.org/10.4097/kjae.2017.70.1.22
  • 33. Kiøarboe, T., Møhlenberg, F., 1987. Partitioning of oxygen consumption between “maintenance” and “growth” in developing herring Clupea harengus (L.) embryos. J. Exp. Mar. Biol. Ecol. 111 (2). https://doi.org/10.1016/0022-0981(87)90048-7
  • 34. Kniebusch, M., Meier, H.E.M., Radtke, H., 2019. Changing Salinity Gradients in the Baltic Sea As a Consequence of Altered Freshwater Budgets. Geophys. Res. Lett. 46 (16). https://doi.org/10.1029/2019GL083902
  • 35. Kornilovs, G., Sidrevics, L., Dippner, J.W., 2001. Fish and zooplankton interaction in the Central Baltic Sea. ICES J. Marine. Sci. 58, 579-588. https://doi.org/10.1006/jmsc.2001.1062
  • 36. Kulke, R., Bödewadt, V., Hänselmann, K., Herrmann, J.P., Temming, A., 2018. Ignoring the vertical dimension: biased view on feeding dynamics of vertically migrating sprat (Sprattus sprattus). ICES J. Mar. Sci. 75 (7), 2450-2462. https://doi.org/10.1093/ICESJMS/FSY136
  • 37. Lankov, A., Ojaveer, H., Simm, M., Põllupüü, M., Möllmann, C., 2010. Feeding ecology of pelagic fish species in the Gulf of Riga (Baltic Sea): The importance of changes in the zooplankton community. J. Fish. Biol. 77 (10), 2268-2284. https://doi.org/10.1111/j.1095-8649.2010.02805.x
  • 38. Lehmann, A., Myrberg, K., Post, P., Chubarenko, I., Dailidiene, I., Hinrichsen, H.H., Hüssy, K., Liblik, T., Meier, H.E.M., Lips, U., Bukanova, T., 2022. Salinity dynamics of the Baltic Sea. Earth Syst. Dynam. 13 (1). https://doi.org/10.5194/esd- 13- 373- 2022
  • 39. Madhupratap, M., Nair, V., Nair, S., Achuthankutty, C., 1981. Thermocline and zooplankton distribution. Indian J. Geo-Mar. Sci. (IJMS) 10 (3).Maravelias, C.D., Reid, D.G., Swartzman, G., 2000. Modelling spatio-temporal effects of environment on Atlantic herring, Clupea harengus. Environ. Biol. Fish. 58 (2). https://doi.org/10.1023/A:1007693732571
  • 40. Margonski, P., Hansson, S., Tomczak, M.T., Grzebielec, R., 2010. Climate influence on Baltic cod, sprat, and herring stock-recruitment relationships. Prog. Oceanogr. 87 (1—4), 277-288. https://doi.org/10.1016/j.pocean.2010.08.003
  • 41. Markus Meier, H.E., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmgren, R., Myrberg, K., Ahola, M.P., Bartosova, A., Bonsdorff, E., Börgel, F., Capell, R., Carlén, I., Carlund, T., Carstensen, J., Christensen, O.B., Dierschke, V., Frauen, C., Frederiksen, M., Zhang, W., 2022. Climate change in the Baltic Sea region: A summary. Earth Syst. Dynam. 13 (1), 457-593. https://doi.org/10.5194/esd-13-457-2022
  • 42. McHugh, M.L., 2011. Multiple comparison analysis testing in ANOVA. Biochem. Medica 21 (3). https://doi.org/10.11613/bm.2011.029
  • 43. Mills, K.E., Kerr, L., Reidmiller, D., Tokunaga, K., 2021. Future fisheries in a changing ocean. MAR Technol. Soc. J. 55 (3). https://doi.org/10.4031/MTSJ.55.3.32
  • 44. Möllmann, C., Kornilovs, G., Fetter, M., Köster, F.W., 2004. Feeding ecology of central Baltic Sea herring and sprat. J. Fish. Biol. 65 (6), 1563-1581. https://doi.org/10.1111/j.0022-1112.2004.00566.x
  • 45. Möllmann, C., Kornilovs, G., Sidrevices, L., 2000. Long-term dynamics of the main mesozooplankton species in the central Baltic Sea. J. Plankton Res. 22, 2015-2038. https://doi.org/10.1093/plankt/22.11.2015
  • 46. Neverman, D., Wurtsbaugh, W.A., 1994. The thermoregulatory function of diel vertical migration for a juvenile fish, Cottus extensus. Oecologia 98 (3—4), 247-256. https://doi.org/10.1007/BF00324211
  • 47. Nilsson, L.A.F., Thygesen, U.H., Lundgren, B., Nielsen, B.F., Nielsen, J.R., Beyer, J.E., 2003. Vertical migration and dispersion of sprat (Sprattus sprattus) and herring (Clupea harengus) schools at dusk in the Baltic Sea. Aquat. Living Resour. 16 (3), 317-324. https://doi.org/10.1016/S0990-440(03)00039-1
  • 48. Ojaveer, H., Lankov, A., Raid, T., Pollumae, A., Klais, R., 2018. Selecting for three copepods — feeding of sprat and herring in the Baltic Sea. ICES J. Marine Sci. 75 (7), 2439-2449. https://doi.org/10.1093/icesjms/fsx249
  • 49. Parmanne, R., Rechlin, O., Sjöstrand, B., 1994. Status and future of herring and sprat stocks in the Baltic Sea (Vol. 10).
  • 50. Petereit, C., Haslob, H., Kraus, G., Clemmesen, C., 2008. The influence of temperature on the development of Baltic Sea sprat (Sprattus sprattus) eggs and yolk sac larvae. Mar. Biol. 154 (2), 295-306. https://doi.org/10.1007/s00227-008-0923-1
  • 51. Petereit, C., Hinrichsen, H.H., Voss, R., Kraus, G., Freese, M., Clemmesen, C., 2009. The influence of different salinity conditions on egg buoyancy and development and yolk sac larval survival and morphometric traits of Baltic Sea sprat (Sprattus sprattus balticus Schneider). Sci. Mar. 73 (S1). https://doi.org/10.3989/scimar.2009.73s1059
  • 52. Pihlajamäki, M., Asikainen, A., Ignatius, S., Haapasaari, P., Tuomisto, J.T., 2019. Forage fish as food: Consumer perceptions on baltic herring. Sustainability 11 (16), 4298. https://doi.org/10.3390/su11164298
  • 53. Pikitch, E.K., Rountos, K.J., Essington, T.E., Santora, C., Pauly, D., Watson, R., Sumaila, U.R., Boersma, P.D., Boyd, I.L., Conover, D.O., Cury, P., Heppell, S.S., Houde, E.D., Mangel, M., Plagányi, É., Sainsbury, K., Steneck, R.S., Geers, T.M., Gownaris, N., Munch, S.B., 2014. The global contribution of forage fish to marine fisheries and ecosystems. Fish. Fish. 15 (1), 43-64. https://doi.org/10.1111/faf.12004
  • 54. Receveur, A., Bleil, M., Funk, S., Stötera, S., Gräwe, U., Naumann, M., Dutheil, C., Krumme, U., 2022. Western Baltic cod in distress: decline in energy reserves since 1977. ICES J. Mar. Sci. 79 (4). https://doi.org/10.1093/icesjms/fsac042
  • 55. Saraux, C., Fromentin, J.M., Bigot, J.L., Bourdeix, J.H., Morfin, M., Roos, D., van Beveren, E., Bez, N., 2014. Spatial structure and distribution of small pelagic fish in the northwestern mediterranean sea. PLoS ONE 9 (11). https://doi.org/10.1371/journal.pone.0111211
  • 56. Schwertman, N.C., Owens, M.A., Adnan, R., 2004. A simple more general boxplot method for identifying outliers. Computation. Statistics Data Analys. 47 (1). https://doi.org/10.1016/j.csda.2003.10.012
  • 57. Serykh, I.v., Kostianoy, A.G., 2019. About the climatic changes in the temperature of the Baltic Sea. Fund. Appl. Hydro. 12 (3). https://doi.org/10.7868/S207366731903002X
  • 58. Simpson, D.G., 1989. Hellinger deviance tests: Efficiency, break-down points, and examples. J. Am. Stat. Assoc. 84 (405), 107-113. https://doi.org/10.1080/01621459.1989.10478744
  • 59. Snyder, S., Franks, P.J.S., Talley, L.D., Xu, Y., Kohin, S., 2017. Crossing the line: Tunas actively exploit submesoscale fronts to enhance foraging success. Limnol. Oceanogr. Lett. 2 (5). https://doi.org/10.1002/lol2.10049
  • 60. Tamm, O., Maasikamäe, S., Padari, A., Tamm, T., 2018. Modelling the effects of land use and climate change on the water resources in the eastern Baltic Sea region using the SWAT model. CATENA 167. https://doi.org/10.1016/j.catena.2018.04.029
  • 61. Van Vranken, C., Vastenhoud, B.M.J., Manning, J.P., Plet-Hansen, K.S., Jakoboski, J., Gorringe, P., Martinelli, M., 2020. Fishing Gear as a Data Collection Platform: Opportunities to Fill Spatial and Temporal Gaps in Operational Sub-Surface Observation Networks. Front. Mar. Sci. 7, 864. https://doi.org/10.3389/fmars.2020.485512
  • 62. Voss, R., Dickmann, M., Hinrichsen, H.H., Floeter, J., 2008. Environmental factors influencing larval sprat Sprattus sprattus feeding during spawning time in the Baltic Sea. Fish. Oceanogr. 17 (3). https://doi.org/10.1111/j.1365-2419.2008.00474.x
  • 63. Voss, R., Hinrichsen, H.H., Quaas, M.F., Schmidt, J.O., Tahvonen, O., 2011. Temperature change and Baltic sprat: From observations to ecologicaleconomic modelling. ICES J. Mar. Sci. 68 (6). https://doi.org/10.1093/icesjms/fsr063
  • 64. Wang, T., Overgaard, J., 2007. The heartbreak of adapting to global warming. Science 315 (5808). https://doi.org/10.1126/science.1137359
  • 65. Załachowski, W., Szypuła, J., Krzykawski, S., Krzykawska, I., 1975. Feeding of some commercial fishes in the southern region of the Baltic Sea — in 1971 and 1972. Pol. Arch. Hydrobiol. 22 (3), 429-448 (in Polish with Engl. summ).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5c95069-0c84-42b5-8f99-be15dbdd2cf6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.