PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and characterization of aluminum/iron – pillared bentonite catalysts for empty fruit bunches biomass gasification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biomass gasification, such as the gasification of empty fruit bunches (EFB), is a promising method for renewable energy production. However, its efficiency remains limited due to high tar formation, incomplete carbon conversion, and the lack of effective catalysts. This study aims to synthesize a catalyst from bentonite pillared with aluminium (Al) and iron (Fe) to address these challenges and enhance gasification efficiency. The catalyst was characterized using FTIR, SEM, EDS, and XRD, and gasification was performed at 550 °C with catalyst concentrations of 1.25% and 2.5%. FTIR confirmed the formation of Al-O and Fe-O bonds, while SEM revealed a smooth, porous surface with evenly distributed metals. The material exhibited a porosity of 54.36% and a pore volume of 7.448 × 10-2 m3. EDS recorded Al and Fe contents of 12.9% and 8.0%, respectively, and XRD confirmed the successful incorporation of metal pillars. XRD analysis showed significant structural changes, with metal-pillared bentonite achieving the highest crystallinity of 68.96% and an average crystal size of 22.152 nm, reflecting improved stability and catalytic performance. These modifications enhanced porosity and thermal stability, crucial for high-temperature applications. Gasification with the 2.5% catalyst increased H-2 content to 36.1%, CO to 19.7%, and reduced CO-2 to 1.2%. Carbon conversion efficiency reached 82.5%, and cold gas energy efficiency improved to 41.2%. In conclusion, Al/Fe-pillared bentonite enhanced gasification performance and produced high-quality syngas suitable for renewable energy applications.
Rocznik
Strony
119--134
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Environmental Science Doctoral Study Program, Graduate School, Universitas Sriwijaya, Jl. Padang Selasa, No. 524, Bukit Besar, Palembang 30139, Sumatera Selatan, Indonesia.
  • Chemical Engineering Department, Faculty of Engineering, Universitas Tamansiswa, Jl. Tamansiswa No. 261 20 Ilir D. I, Ilir Tim. I, Kota Palembang, Sumatera Selatan, Indonesia
autor
  • Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl.Raya Palembang-Prabumulih Km 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
autor
  • Environmental Science Doctoral Study Program, Graduate School, Universitas Sriwijaya, Jl. Padang Selasa, No. 524, Bukit Besar, Palembang 30139, Sumatera Selatan, Indonesia.
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang Prabumulih Km 32 Indralaya, Ogan Ilir, Sumatera Selatan 30662, Indonesia
Bibliografia
  • 1. Amari, A., Alzahrani, F. M., Katubi, K. M., Alsaiari, N. S., Tahoon, M. A., & Rebah, F. Ben. (2021). Claypolymer nanocomposites: Preparations and utilization for pollutants removal. In Materials 14(6). MDPI AG. https://doi.org/10.3390/ma14061365
  • 2. Aprianti, N., Faizal, M., Said, M., & Nasir, S. (2024). Sorption-enhanced steam gasification of fine coal waste for fuel producing. Journal of King Saud University - Engineering Sciences, 36(2), 81–88. https://doi.org/10.1016/j.jksues.2022.08.003
  • 3. Asadullah, M., Miyazawa, T., Ito, S. I., Kunimori, K., Yamada, M., & Tomishige, K. (2004). Gasification of different biomasses in a dual-bed gasifier system combined with novel catalysts with high energy efficiency. Applied Catalysis A: General, 267(1–2), 95–102. https://doi.org/10.1016/j.apcata.2004.02.028
  • 4. Bellucci, S., Rudayni, H. A., Shemy, M. H., Aladwani, M., Alneghery, L. M., Allam, A. A., & Abukhadra, M. R. (2023). Synthesis and characterization of green zinc-metal-pillared bentonite mediated curcumin extract (Zn@CN/BE) as an enhanced antioxidant and anti-diabetes agent. Inorganics, 11(4). https://doi.org/10.3390/inorganics11040154
  • 5. Berhe, M. T., Berhe, G. G., Cheru, M. S., & Weldehans, M. G. (2024). Characterization of acid activation of bentonite clay of Hadar, Afar, Ethiopia. Advances in Materials Science and Engineering, 1. https://doi.org/10.1155/2024/6413786
  • 6. Borah, D., Nath, H., & Saikia, H. (2022). Modification of bentonite clay & its applications: a review. In Reviews in Inorganic Chemistry 42(3), 265–282. De Gruyter Open Ltd. https://doi.org/10.1515/revic-2021-0030
  • 7. Crespo, E., Martín, D. A., & Costafreda, J. L. (2024). Bentonite clays related to volcanosedimentary formations in southeastern Spain: Mineralogical, Chemical and Pozzolanic Characteristics. Minerals, 14(8). https://doi.org/10.3390/min14080814
  • 8. Cuevas, J., Cabrera, M. Á., Fernández, C., MotaHeredia, C., Fernández, R., Torres, E., Turrero, M. J., & Ruiz, A. I. (2022). Bentonite Powder XRD Quantitative Analysis Using Rietveld Refinement: Revisiting and Updating Bulk Semiquantitative Mineralogical Compositions. Minerals, 12(6). https://doi.org/10.3390/min12060772
  • 9. Ebrahimi, P., Kumar, A., & Khraisheh, M. (2020). A review of recent advances in water-gas shift catalysis for hydrogen production. Emergent Materials, 3, 881–917. https://doi.org/10.1007/s42247-020-00116-y/Published
  • 10. Faizan, M., & Song, H. (2023). Critical review on catalytic biomass gasification: State-of-Art progress, technical challenges, and perspectives in future development. Journal of Cleaner Production, 408, 137224.
  • 11. Gandhi, D., Bandyopadhyay, R., & Soni, B. (2022). Naturally occurring bentonite clay: Structural augmentation, characterization and application as catalyst. Materials Today: Proceedings, 57, 194–201. https://doi.org/10.1016/j.matpr.2022.02.346
  • 12. Gao, N., Salisu, J., Quan, C., & Williams, P. (2021). Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review. In Renewable and Sustainable Energy Reviews 145. Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.111023
  • 13. Ihekweme, G. O., Shondo, J. N., Orisekeh, K. I., Kalu-Uka, G. M., Nwuzor, I. C., & Onwualu, A. P. (2020). Characterization of certain Nigerian clay minerals for water purification and other industrial applications. Heliyon, 6(4). https://doi.org/10.1016/j.heliyon.2020.e03783
  • 14. Islam, M. W. (2020). A review of dolomite catalyst for biomass gasification tar removal. In Fuel 267. Elsevier Ltd. https://doi.org/10.1016/j.fuel.2020.117095
  • 15. Keereerak, A., Sukkhata, N., Lehman, N., Nakaramontri, Y., Sengloyluan, K., Johns, J., & Kalkornsurapranee, E. (2022). Development and characterization of unmodified and modified natural rubber composites filled with modified clay. Polymers, 14(17). https://doi.org/10.3390/polym14173515
  • 16. Kurian, M., & Kavitha, S. (2016). A Review on the Importance of Pillared Interlayered Clays in Green Chemical Catalysis. IOSR Journal of Applied Chemistry, 47–54. www.iosrjournals.org
  • 17. Kwon, T., Jeong, H., Kim, M., Jung, S., & Ro, I. (2024). Catalytic approaches to tackle mixed plastic waste challenges: A review. Langmuir, 40(33).
  • 18. Liu, Q., Hu, C., Peng, B., Liu, C., Li, Z., Wu, K., Zhang, H., & Xiao, R. (2019). High H2/CO ratio syngas production from chemical looping co-gasification of biomass and polyethylene with CaO/Fe2O3 oxygen carrier. Energy Conversion and Management, 199, 111951. https://doi.org/10.1016/j.enconman.2019.111951
  • 19. Liu, Z., Zhang, Y., Lee, J., & Xing, L. (2024). A review of application mechanism and research progress of Fe/montmorillonite-based catalysts in heterogeneous Fenton reactions. In Journal of Environmental Chemical Engineering 12(2). Elsevier Ltd. https://doi.org/10.1016/j.jece.2024.112152
  • 20. Lu, Q., Li, W., Zhang, X., Liu, Z., Cao, Q., Xie, X., & Yuan, S. (2020). Experimental study on catalytic pyrolysis of biomass over a Ni/Ca-promoted Fe catalyst. Fuel, 263, 116690.
  • 21. 21. Maitlo, G., Ali, I., Mangi, K. H., Ali, S., Maitlo, H. A., Unar, I. N., & Pirzada, A. M. (2022). Thermochemical conversion of biomass for syngas production: Current status and future trends. In Sustainability (Switzerland) 14(5). MDPI. https://doi.org/10.3390/su14052596
  • 22. Mane, P. V., Rego, R. M., Yap, P. L., Losic, D., & Kurkuri, M. D. (2024). Unveiling cutting-edge advances in high surface area porous materials for the efficient removal of toxic metal ions from water. In Progress in Materials Science 146. Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2024.101314
  • 23. Nganda, A., Srivastava, P., Lamba, B. Y., Pandey, A., & Kumar, M. (2023). Advances in the fabrication, modification, and performance of biochar, red mud, calcium oxide, and bentonite catalysts in waste-to-fuel conversion. Environmental Research, 232(116284).
  • 24. Ramos, A., & Rouboa, A. (2020). Syngas production strategies from biomass gasification: Numerical studies for operational conditions and quality indexes. Renewable Energy, 155, 1211–1221. https://doi.org/10.1016/j.renene.2020.03.158
  • 25. Said, M., Dian, A. R., Mohadi, R., & Lesbani, A. (2020). Cr/Al Pillared Bentonite and Its Application on Congo Red and Direct Blue Removal. Molekul., 15(3), 140–148.
  • 26. Taghavi, R., Rostamnia, S., Farajzadeh, M., KarimiMaleh, H., Wang, J., Kim, D., Jang, H. W., Luque, R., Varma, R. S., & Shokouhimehr, M. (2022). Magnetite metal-organic frameworks: Applications in environmental remediation of heavy metals, organic contaminants, and other pollutants. Inorganic Chemistry, 61(40), 15747–15783. https://doi.org/10.1021/acs.inorgchem.2c01939
  • 27. Vallejo, C. A., Galeano, L. A., Trujillano, R., Vicente, M. Á., & Gil, A. (2020). Preparation of Al/Fe-PILC clay catalysts from concentrated precursors: Enhanced hydrolysis of pillaring metals and intercalation. RSC Advances, 10(66), 40450–40460. https://doi.org/10.1039/d0ra08948f
  • 28. Wang, B., Lan, J., Bo, C., Gong, B., & Ou, J. (2023). Adsorption of heavy metal onto biomass-derived activated carbon: review. In RSC Advances 13(7), 4275–4302. Royal Society of Chemistry. https://doi.org/10.1039/d2ra07911a
  • 29. Wang, J., Kang, D., Shen, B., Sun, H., & Wu, C. (2020). Enhanced hydrogen production from catalytic biomass gasification with in-situ CO2 capture. Environmental Pollution, 267. https://doi.org/10.1016/j.envpol.2020.115487
  • 30. Wei, G., Yang, Y., Li, Y., Zhang, L., Xin, Z., Li, Z., & Huang, L. (2020). A new catalytic composite of bentonite-based bismuth ferrites with good response to visible light for photo-Fenton reaction: Preparation, characterization and analysis of physicochemical changes. Applied Clay Science, 184(105397).
  • 31. Wu, N., Lan, K., & Yao, Y. (2023). An integrated techno-economic and environmental assessment for carbon 1 capture in hydrogen production by biomass gasification 2. Resources, Conservation and Recycling, 188(106693).
  • 32. Yuan, D., Peng, Y., Ma, L., Li, J., Zhao, J., Hao, J., Wang, S., Liang, B., Ye, J., & Yaguang, L. (2022). Coke and sintering resistant nickel atomically doped with ceria nanosheets for highly efficient solar driven hydrogen production from bioethanol. Green Chemistry, 5, 1749–2252.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5c356dd-ad97-412a-af69-1ab0fc5dad21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.