PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Upper Limb Load as a Function of Repetitive Task Parameters: Part 2 - An Experimental Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to compare the theoretical indicator of upper limb load with the physiological indicator of musculoskeletal load, which is present while performing a repetitive task (a normalized electromyography [EMG] amplitude recorded from the muscles of the upper limb involved in the performed task). In an experimental study of a repetitive task, the EMG signal from 5 main muscles of the shoulder girdle, arm and forearm was registered: extensor carpi radialis longus, flexor carpi ulnaris, deltoideus anterior, biceps brachii caput breve and trapezius descendent. The results of the study showed a strong correlation between the theoretical indicator (Integrated Cycle Load) and the physiological indicator (root mean square of a normalized EMG amplitude from the 5 muscles). This proves that the developed theoretical indicator can be accepted as an indicator of upper limb musculoskeletal load during a work task.
Rocznik
Strony
103--112
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
autor
  • Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
Bibliografia
  • 1. Cook T, Rosencrance J, Zimmermann C, Gerleman D, Ludewig P. Electromyographic analysis of a repetitive hand gripping task. International Journal of Occupational Safety and Ergonomics (JOSE) 1998;4(2):185–200.
  • 2. Dahalan JB, Fernandez JE. Psychophysical frequency for a gripping task. Int J Ind Ergon 1993;12:219–30.
  • 3. Hagberg M. Work load and fatigue in repetitive arm elevations. Ergonomics 1981; 24(7):543–55.
  • 4. Kim CH, Fernandez JE. Psychophysical frequency for a gripping task. Int J Ind Ergon 1993;12:209–18.
  • 5. Kobryn U, Hoffmann B, Küchler G. Effects of repeated fatiguing rythmical hand work. Eur J Appl Physiol 1981;47:271–97.
  • 6. Marley R, Fernandez J. Psychophysical frequency and sustained exertion at varying wrist postures for a drilling task. Ergonomics 1995;38(2):303–25.
  • 7. Roman-Liu D, Tokarski T, Kamińska J. Assessment of musculoskeletal load of trapezius and deltoid muscles during activity of hand. International Journal of Occupational Safety and Ergonomics (JOSE) 2001;7(2);179–93.
  • 8. Bystrom SEG, Kilbom Å. Physiological response in the forearm during and after isometric intermittent handgrip. Eur J Appl Physiol 1990;60:457–66.
  • 9. Mathiassen SE. The influence of exercise/ rest shedule on the physiological and psychophysical response to isometric shoulder-neck exercise. Eur J Appl Physiol 1993;67:528–39.
  • 10. Anti S. Relationship between time means of external load and EMG amplitude in long term myoelectric studies. Electromyogr Clin Neurophysiol 1977;17:45–53.
  • 11. Christensen H, LoMonaco M, Dahl K, Fuglsang-Frederiksen A. Processing of electrical activity in human muscle during a gradual increase in force. Electroencephalogr Clin Neurophysiol 1984;58:230–39.
  • 12. De Luca CJ. The use of surface electromyography in biomechanics. J Appl Biomech 1997;13:135–63.
  • 13. Grant KA, Habes DJ, Putz-Anderson V. Psychophysical and EMG correlates of force exertion in manual work. Int J Ind Ergon 1994;13:31–9.
  • 14. Lawrence JH, De Luca CJ. Myoelectric signal versus force relationship in different human muscles, J Appl Physiol 1983;54:1653–9.
  • 15. Roman-Liu D. Upper limb load as a function of repetitive task parameters: part 1—a model of upper limb load. International Journal of Occupational Safety and Ergonomics (JOSE) 2005;11(1):93–102.
  • 16. Kelly BT, Kadrmas WR, Kirkendall DT, Speer KP. Optimal normalization tests for shoulder muscle activation: an electromyographic study. J Orthop Res 1996;14:647–53.
  • 17. Nieminen H., Takala E.P., Vikari-Juntura E. Normalization of electromyogram in the neck-shoulder region. Eur J Appl Physiol 1993;67:199–207.
  • 18. Mirka GA. The quantification of EMG normalization error. Ergonomics 1991; 34(3):343–52.
  • 19. Kim JY, Chung MK, Park JS. Measurement of physical work capacity during arm and shoulder lifting at various shoulder flexion and ad/abduction angles. Human Factors and Ergonomics in Manufacturing 2003;13(2):153–63.
  • 20. Ohtsuki T. Decrease in grip strength induced by simultaneous bilateral exertion with reference to finger strength. Ergonomics 1981;24(1):37–48.
  • 21. Roman-Liu D, Tokarski T. EMG arm and forearm muscle activities with regard to handgrip force in relation to upper limb location. Acta of Bioengineering and Biomechanics 2002;4(2):33–47.
  • 22. Herberts P, Kadefors R, Broman H. Arm positioning in manual tasks, An electromyographic study of localised muscle fatigue, Ergonomics 1980;23:655–65.
  • 23. Mathiassen SE, Winkel J. Electromyographic activity in the shoulder-neck region according to arm position and glenohumeral torque. Eur J Appl Physiol 1990;61:370–9.
  • 24. Sigholm G, Herberts P, Almström C, Kadefors R. Electromyographic analysis of shoulder muscle load. J Orthop Res 1984;1:379–86.
  • 25. Giroux B, Lamontagne M. Net shoulder joint moment and muscular activity during light weight-handling at different displacements and frequencies. Ergonomics 1992;35(4):385–403.
  • 26. Kronberg M, Nemeth G, Broström L. Muscle activity and coordination in the normal shoulder—an electromyographic study. Clin Orthop 1990;257:76–85.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5bd4d62-cf55-49d8-a56a-ae689fdaa607
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.