PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vertical electrical sounding for revealing the groundwater resources in the geothermal spring of Jaboi volcano

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geothermal energy is considered renewable energy that is environmentally friendly and sustainable compared to the conventional energy from fossil fuels. However, uncontrolled geothermal exploitation can cause a decrease in the groundwater table and reservoir temperature, such as in the Jaboi volcano on Weh Island, where a power plant has been built to generate electrical energy with an estimated power of 50 MWe but still has not been operated. A geophysical survey is needed to determine the local hydrothermal system, including groundwater reserves under the surface which can be used to refill the hydrothermal wells during exploitation. This study measured vertical electrical sounding (VES) data at 15 points near the crater and geothermal power plant. In addition, very-low-frequency (VLF) data that pass through the crater were also collected to determine the presence of other hydrothermal resources such as fractures and faults. The results of the 1D least-square inversion show three subsurface models where groundwater resources with low resistivity (< 1.5 Qm) are found at a depth of 50-100 m. The same results are also obtained from the 2D cross-section model that impermeable resistive anomalies in alluvial and tuff rocks dominate the near-surface area. The layer after groundwater is an impermeable rock in the form of breccia. The results of 2D VES and VLF modeling also show the presence of the Ceunohot and Leumomate faults, which are beneficial as fluid access to the surface. Based on the data analysis, the combination of VES and VLF data can be used to image shallow hydrothermal systems such as groundwater resources and faults in the Jaboi volcano.
Czasopismo
Rocznik
Strony
1617--1635
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • Geophysical Engineering Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
  • Geophysical Engineering Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
  • Physics Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
  • Geophysical Engineering Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
  • Physics Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
autor
  • Geophysical Engineering Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
  • Physics Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
  • Geophysical Engineering Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
  • Physics Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
  • Physics Department, Universitas Malikussaleh, Lhokseumawe 24351, Indonesia
  • Geophysical Engineering Department, Institut Teknologi Sumatera, Lampung Selatan, Lampung, Indonesia
autor
  • Department of Geophysical Engineering, Faculty of Mining and Petroleum, Bandung Institute of Technology, Bandung 40132, Indonesia
  • Geophysical Engineering Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia
  • Department of Geology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
autor
  • PT. Elnusa Tbk, Simatupang, Graha Elnusa, Jakarta Selatan 12560, Indonesia
Bibliografia
  • 1. Abbas AM, Khalil MA, Massoud U et al (2012) The implementation of multi-task geophysical survey to locate Cleopatra Tomb at Tap-Osiris Magna, Borg El-Arab, Alexandria, Egypt “Phase II.” NRIAG J Astron Geophys. https://doi.org/10.1016/j.nrjag.2012. 11.001
  • 2. Akar S, Augustine C, Kurup P (2021) Global value chain and manufacturing analysis on geothermal power plant turbines. In: Colpan CO, Ezan MA, Kizilkan O (eds) Thermodynamic analysis and optimization of geothermal power plants. Elsevier, Amsterdam, pp 17-41. https://doi.org/10.1016/B978-0-12-821037-6.00007-X
  • 3. Alves M, Galväo P, Aranha P (2021) Karst hydrogeological controls and anthropic effects in an urban lake. J Hydrol 593:125830. https://doi.org/10.1016/j.jhydrol.2020.125830
  • 4. Arowoogun KI (2021) Osinowo OO (2021) 3D resistivity model of 1D vertical electrical sounding (VES) data for groundwater potential and aquifer protective capacity assessment: a case study. Model Earth Syst Environ 82(8):2615-2626. https://doi.org/10.1007/ S40808-021-01254-W
  • 5. Baranwal VC, Sharma SP (2006) Integrated geophysical studies in the East-Indian geothermal province. Pure Appl Geophys 163:209227. https://doi.org/10.1007/s00024-005-0001-2
  • 6. Bellier O, Sébrier M (1995) Is the slip rate variation on the Great Sumatran Fault accommodated by fore-arc stretching? Geophys Res Lett 22:1969-1972. https://doi.org/10.1029/95GL01793
  • 7. Ben BF, Boughariou E, Makni J, Bouri S (2020) Evaluation of groundwater hydrogeochemical characteristics and delineation of geothermal potentialities using multi criteria decision analysis: case of Tozeur region Tunisia. Appl Geochem 113:104504. https://doi. org/10.1016/J.APGEOCHEM.2019.104504
  • 8. Bradley KE, Feng L, Hill EM et al (2017) Implications of the diffuse deformation of the Indian Ocean lithosphere for slip partitioning of oblique plate convergence in Sumatra. J Geophys Res Solid Earth 122:572-591. https://doi.org/10.1002/2016JB013549
  • 9. Byrdina S, Grandis H, Sumintadireja P et al (2018) Structure of the acid hydrothermal system of Papandayan volcano, Indonesia, investigated by geophysical methods. J Volcanol Geotherm Res 358:77-86. https://doi.org/10.1016/J.JVOLGEORES.2018.06.008
  • 10. Chabaane A, Redhaounia B, Gabtni H (2017) Combined application of vertical electrical sounding and 2D electrical resistivity imaging for geothermal groundwater characterization: Hammam Sayala hot spring case study (NW Tunisia). J African Earth Sci 134:292298. https://doi.org/10.1016/j.jafrearsci.2017.07.003
  • 11. Dewanto BG, Rachmat H, Kriswati E et al (2023) Study of geothermal and volcanic activity at Mount Awu, the deadliest active volcano in North Sulawesi Province, Indonesia using Optical Satellite Imagery. J Volcanol Geotherm Res 438:107811. https://doi.org/ 10.1016/J.JVOLGEORES.2023.107811
  • 12. Dirasutisna S, Hasan A. (2005) Geologi Panas Bumi Jaboi, Sabang, Provinsi Aceh Nanggroe Darussalam. 1-6
  • 13. Dowling RK, Newsome D (2005) Geotourism
  • 14. Duan Z, Pang Z, Wang X (2011) Sustainability evaluation of limestone geothermal reservoirs with extended production histories in Beijing and Tianjin, China. Geothermics 40:125-135. https://doi.org/ 10.1016/J.GEOTHERMICS.2011.02.001
  • 15. Ebrahimi A, Sundararajan N, Ramesh Babu V (2019) A comparative study for the source depth estimation of very low frequency
  • 16. electromagnetic (VLF-EM) signals. J Appl Geophys. https://doi. org/10.1016/j.jappgeo.2019.01.007
  • 17. Gao J, Zhang H, Zhang S et al (2018) Three-dimensional magnetotelluric imaging of the geothermal system beneath the Gonghe Basin, Northeast Tibetan Plateau. Geothermics 76:15-25. https://doi.org/ 10.1016/j.geothermics.2018.06.009
  • 18. Ghosal D, Singh SC, Chauhan APS, Hananto ND (2012) New insights on the offshore extension of the Great Sumatran fault, NW Sumatra, from marine geophysical studies. Geochem, Geophys Geosyst 13:2012GC004122. https://doi.org/10.1029/2012GC004122
  • 19. González JAM, Comte J-C, Legchenko A et al (2021) Quantification of groundwater storage heterogeneity in weathered/fractured basement rock aquifers using electrical resistivity tomography: sensitivity and uncertainty associated with petrophysical modelling. J Hydrol 593:125637
  • 20. Gunawan E, Widiyantoro S, Rosalia S et al (2018) Coseismic slip distribution of the 2 July 2013 Mw 6.1 Aceh, Indonesia, earthquake and its tectonic implicationscoseismic slip distribution of the 2 July 2013 Mw 6.1 Aceh, Indonesia. Earthq Bull Seismol Soc Am 108:1918-1928. https://doi.org/10.1785/0120180035
  • 21. Hacioglu Ö, Ba§okur AT, Diner ę (2021) Geothermal potential of the eastern end of the Gediz basin, western Anatolia, Turkey revealed by three-dimensional inversion of magnetotelluric data. Geothermics 91:102040. https://doi.org/10.1016/j.geothermics. 2020.102040
  • 22. Hähnlein S, Bayer P, Ferguson G, Blum P (2013) Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 59:914-925. https://doi.org/10.1016/J.ENPOL.2013.04. 040
  • 23. Hochstein MP, Sudarman S (1993) Geothermal resources of Sumatra. Geothermics 22:181-200. https://doi.org/10.1016/0375-6505(93) 90042-L
  • 24. Hochstein MP, Sudarman S (2008) History of geothermal exploration in Indonesia from 1970 to 2000. Geothermics 37:220-266. https:// doi.org/10.1016/j.geothermics.2008.01.001
  • 25. Ismail N, Yanis M, Idris S et al (2017) Near-surface fault structures of the seulimuem segment based on electrical resistivity model. J Phys: Conf Ser 846(1):012016
  • 26. Khalil MA, Santos FAM (2011) 2D resistivity inversion of 1D electrical-sounding measurements in deltaic complex geology: application to the delta Wadi El-Arish, Northern Sinai. Egypt J Geophys Eng 8:422-433. https://doi.org/10.1088/1742-2132/8/3/003
  • 27. Lai YM, Chung SL, Ghani AA et al (2021) Mid-Miocene volcanic migration in the westernmost Sunda arc induced by India-Eurasia collision. Geology 49:713-717. https://doi.org/10.1130/G48568.1
  • 28. Lay T, Kanamori H, Ammon CJ et al (2005) The great Sumatra-Andaman earthquake of 26 December 2004. Science 308(80):1127-1133. https://doi.org/10.1126/SCIENCE.1112250/SUPPL_FILE/ LAY_SOM.PDF
  • 29. Loke MH (2011) Electrical resistivity surveys and data interpretation. Encycl Earth Sci Ser Part 5:276-283. https://doi.org/10.1007/978-90-481-8702-7_46
  • 30. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1. Geophys Prospect 44:131-152. https://doi.org/10.1111/J.1365-2478.1996. TB00142.X
  • 31. Marwan YM, Muzakir NGS (2020) Application of QR codes as a new communication technology and interactive tourist guide in Jaboi, Sabang. IOP Conf Ser Mater Sci Eng 796:012025. https://doi.org/ 10.1088/1757-899X/796/1/012025
  • 32. Marwan A, Yanis M, Furumoto Y (2019a) Lithological identification of devastated area by Pidie Jaya earthquake through poisson’s ratio analysis. Int J GEOMATE 17:210-216. https://doi.org/10. 21660/2019.63.77489
  • 33. Marwan YM, Idroes R, Ismail N (2019b) 2D inversion and static shift of MT and TEM data for imaging the geothermal resources of conference on electrical engineering and informatics (ICELT-ICs). IEEE, pp. 1-6
  • 34. Zaini N, Yanis M, Abdullah F et al (2022) Exploring the geothermal potential of Peut Sagoe volcano using Landsat 8 OLI/TIRS images. Geothermics 105:102499. https://doi.org/10.1016/J. GEOTHERMICS.2022.102499
  • 35. Zarkasyi A, Suhanto E (2013) Pemodelan Inversi 3D Gaya Berat dan Magnet Pada Sistem Panas Bumi Daerah Jaboi, Pulau Weh, Provinsi Aceh. Bul Sumber Daya Geol 8:26-32. https://doi.org/ 10.47599/bsdg.v8i1.77
  • 36. Zhang L, Jiang P, Wang Z, Xu R (2017) Convective heat transfer of supercritical CO2 in a rock fracture for enhanced geothermal systems. Appl Therm Eng 115:923-936. https://doi.org/10.1016/j. applthermaleng.2017.01.013
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5bc5047-65fe-48b7-980c-c542df9d0f31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.