Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The interfacial particle velocities for CL-20 and CL-20-based aluminized mixed explosives were measured by interferometry in order to analyze the aluminum reactions in the latter. The reaction characteristics were obtained, as well as a better understanding of the effects of aluminum powder on the detonation reaction zone length. Two functions were used to fit the particle velocity-time profiles, and their intersection was the corresponding Chapman-Jouget (CJ) point. From these profiles, the detonation reaction zone length and the aluminum reaction were then analyzed. CL-20-based explosives have a short reaction time (48 ns for a high CL-20 content), while the reaction time of CL-20/Al explosives increased with the aluminum content and particle size. Micron-scale aluminum particles barely reacted in the CL-20 detonation reaction zone, but instead reacted with the detonation products after the CJ point. This reduced the detonation pressure; however, the aluminum reaction can slow down the decrease in particle velocities. The start times of small-particle aluminum reactions were earlier than those of the larger particles. The 2-3-μm aluminum particles start to react within 1 μs after the CJ point, while the 200-nm particles may start to react in the reaction zone.
Rocznik
Tom
Strony
573--588
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China
autor
- Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China
autor
- Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China
autor
- Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, 100081 Beijing, China
Bibliografia
- [1] Sheffield, S. A.; Bloomquist, D. D.; Tarver, C. M. Subnanosecond Measurements of Detonation Fronts in Solid High Explosives. J. Chem. Phys. 1984, 80(8): 3831-3844.
- [2] Seitz, W.; Stacy, H.; Wackerle, J. Detonation Reaction Zone Studies on TATB Explosives. 8th Int. Symp. Detonation. Albuquerque, USA 1985, 123-132.
- [3] Seitz, W.; Stacy, H.; Engelke, R.; Tang, P.; Wackerle, J. Detonation Reaction-zone Structure of PBX9502. 9th Int. Symp. Detonation, Portland, USA 1989, 657-669.
- [4] Han, Y.; Long, X. P.; Liu, L. Experimental Study on Explosive Reaction Zone. (in Chinese) 1st Symposium on Hazardous Materials and Security Emergency Technology. Chongqing, China 2011, 230-235.
- [5] Fedorov, A.; Menshikh, A.; Yagodin, N. On Detonation Wave Front Structure of Condensed High Explosives. 10th American Physical Society Topical Conference on Shock Compression of Condensed Matter, Amherst, USA 1998, 735-738.
- [6] Loboiko, B.; Lubyatinsky, S. Reaction Zones of Detonating Solid Explosives. Combust., Explos. Shock Waves (Engl. Transl.) 2000, 36: 716-733.
- [7] Lubyatinsky, S.; Loboiko, B. Reaction Zone Measurements in Detonating Aluminized Explosives. Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Seattle, USA 1996, 779-782.
- [8] Tao, W. C.; Tarver, C. M.; Kury, J. W.; Lee, C. G.; Ornellas, D. L. Reactive Flow Modeling of Aluminum Reaction Kinetics in PETN and TNT Using Normalized Product Equation of State. 10th Int. Symp. Detonation, Boston, USA 1993, 628-636.
- [9] Weng, J. D.; Tan, H.; Wang, X.; Ma, Y.; Hu, S.; Wang, X. Optical-fiber Interferometer for Velocity Measurements with Picoseconds Resolution. (in Chinese) Appl. Phys. Lett. 2006, 89: 111101.
- [10] Wang, D. T.; Li, Z. R.; Wu, J. R.; Liu, S. X.; Liu, J.; Meng, J. H.; Liu, Q. An Optical-fiber Displacement Interferometer for Measuring Velocities of Explosivelydriven Metal Plates. (in Chinese) Explos. Shock Waves 2009, 29: 105-108.
- [11] Chen, L.; Pi, Z. D.; Liu, D. Y.; Yang, K.; Wu, J. Y. Shock Initiation of the CL-20 Based Explosive C-1 Measured with Embedded Electromagnetic Particle Velocity Gauges. Propellants Explos. Pyrotech. 2016, 41(6): 1060-1069.
- [12] Liu, D. Y.; Chen, L.; Yang, K.; Zhang, L. S. Study of the Method of Parameters Calibration of Detonation Products JWL Equation of State for CL-20-based Explosives. (in Chinese) Acta Armamentarii 2016, 37 (Suppl. 1), 141-145.
- [13] Chen, Q. C.; Jiang, X. H.; Li, M.; Lu, X. J.; Peng, Q. X. Ignition and Growth Reactive Flow Model for HNS-IV Explosive. (in Chinese) Explos. Shock Waves 2012, 32: 328-332.
- [14] Lubyatinsky, S.; Loboiko, B. Density Effect on Detonation Reaction Zone Length in Solid Explosives. 10th American Physical Society Topical Conference on Shock Compression of Condensed Matter, Amherst, USA 1998, 743-746.
- [15] Wang, C.; Chen, L.; Lu, J. Y. Study on Reaction Process of Small-sized Aluminum Particle in Detonation Reaction Products. (in Chinese) Acta Armamentarii 2012, 33 (Suppl. 2): 30-36.
- [16] Cook, M. A.; Filler, A. S.; Keyes, R. T.; Partridge, W. S.; Ursenbach, W. Aluminized Explosives. J. Phys. Chem. 1957, 61: 189-196.
- [17] Chen, L.; Zhang, S. Q.; Zhao, Y. H. Study of the Metal Acceleration Capacities of Aluminized Explosives with Spherical Aluminum Particles of Different Diameter. (in Chinese) Explosion and Shock Waves 1999, 19: 250-255.
- [18] Bjarnholt, G. Effects of Aluminum and Lithium Fluoride Admixtures on Metal Acceleration Ability of Comp B. 6th Int. Symp. Detonation. Coronado, USA 1976, 510-521.
- [19] Simpson, R. L.; Urtiew, P. A.; Ornellas, D. L.; Moody, G. L.; Scribner, K. J.; Hoffman, D. M. CL-20 Performance Exceeds that of HMX and Its Sensitivity Is Moderate. Propellants Explos. Pyrotech. 1997, 22: 249-255.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5bae762-bc69-47b1-8415-37e19f2d2bea