PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influences of porosity and tangential edge constraint on thermo-torsional postbuckling of FGM toroidal shell segments surrounded by an elastic medium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For the first time, simultaneous influences of porosities, tangential constraints of boundary edges, surrounding elastic media and elevated temperature on the buckling and postbuckling behaviors of a functionally graded toroidal shell segment are investigated in this paper. Porosities exist in the functionally graded material (FGM) according to even and uneven distributions. Properties of constituent materials are assumed to be temperature dependent and effective properties of the porous FGM are determined using a modified rule of mixture. Governing equations are based on the classical shell theory taking into account geometrical nonlinearity and interactive pressure from surrounding elastic medium. Multi-term analytical solutions are assumed to satisfy simply supported boundary conditions and the Galerkin method is adopted to derive nonlinear load – deflection relations and buckling loads. Parametric studies are carried out to analyze the effects of porosity, shell geometry, degree of tangential edge constraint, elevated temperature and elastic media on the buckling resistance and postbuckling strength of toroidal shell segments under a torsional load. The study reveals that tangential edge restraints have considerably beneficial and detrimental influences on the nonlinear stability of torsion-loaded FGM shells at room and elevated temperatures, respectively. The results also find out that the shear layer and the elastic layer of surrounding medium significantly enhances and alleviates the buckling resistance capacity and severity of the snap-through response of the torsion-loaded porous FGM toroidal shell segment, respectively.
Rocznik
Strony
401--429
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Faculty of Civil Engineering, University of Transport Technology, 54, Trieu Khuc, Thanh Xuan, Ha Noi, Viet Nam
autor
  • Faculty of Civil Engineering, Hanoi Architectural University, Km 10, Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
Bibliografia
  • 1. H.S. Shen, Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments, Composites Science and Technology, 62, 977–987, 2002.
  • 2. H.S. Shen, Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments, Engineering Structures, 25, 487–497, 2003.
  • 3. Z. Wan, S. Li, Thermal buckling analysis of functionally graded cylindrical shells, Applied Mathematics and Mechanics (English edition), 38, 1059–1070, 2017.
  • 4. H.V. Tung, Postbuckling of functionally graded cylindrical shells with tangential edge restraints and temperature-dependent properties, Acta Mechanica, 225, 1795–1808, 2014.
  • 5. P.T. Hieu, H.V. Tung, Nonlinear buckling behavior of functionally graded material sandwich cylindrical shells with tangentially restrained edges subjected to external pressure and thermal loadings, Journal of Sandwich Structures and Materials, 23, 6, 2000–2027, 2021.
  • 6. S. Trabelsi, A. Frikha, S. Zghal, F. Dammak, A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells, Engineering Structures, 178, 444–459, 2019.
  • 7. S. Trabelsi, A. Frikha, S. Zghal, F. Dammak, Thermal post-buckling analysis of functionally graded material structures using a modified FSDT, International Journal of Mechanical Sciences, 144, 74–89, 2018.
  • 8. E. Bagherizadeh, Y. Kiani, M.R. Eslami, Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation, Composite Structures, 93, 11, 3063–3071, 2011.
  • 9. H.S. Shen, Postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium, International Journal of Mechanical Sciences, 51, 372–383, 2009.
  • 10. K. Foroutan, L. Dai, Static and dynamic thermal post-buckling analysis of imperfect sigmoid FG cylindrical shells resting on a non-uniform elastic foundation, European Journal of Mechanics – A/Solids, 97, 104770, 2023.
  • 11. N. Wattanasakulpong, V. Ungbhakorn, Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities, Aerospace Science and Technology, 32, 111–120, 2014.
  • 12. A. Gupta, M. Talha, Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates, Mechanics Based Design of Structures and Machines, 46, 6, 693–711, 2018.
  • 13. P.H. Cong, T.M. Chien, N.D. Khoa, N.D. Duc, Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT, Aerospace Science and Technology, 77, 419–428, 2018.
  • 14. M.C. Trinh, T. Mukhopadhyay, S.E. Kim, A semi-analytical stochastic buckling quantification of porous functionally graded plates, Aerospace Science and Technology, 105, 105928, 2020.
  • 15. L.T. Cuong, T.V. Loc, B.Q. Tinh, N.X. Hoang, M.A. Wahab, Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates, Composite Structures, 221, p. 110838, 2019.
  • 16. V.T. Long, H.V. Tung, Thermal nonlinear buckling of shear deformable functionally graded cylindrical shells with porosities, AIAA Journal, 59, 6, 2233–2241, 2021.
  • 17. V.T. Long, H.V. Tung, Thermomechanical nonlinear buckling of pressurized shear deformable FGM cylindrical shells including porosities and elastically restrained edges, Journal of Aerospace Engineering, 34, 3, p. 04021011, 2021.
  • 18. V.T. Long, H.V. Tung, Postbuckling responses of porous FGM spherical caps and circular plates including edge constraints and nonlinear three-parameter elastic foundations, Mechanics Based Design of Structures and Machines, 2021, doi: 10.1080/15397734.2021.1956327.
  • 19. A. Tabiei, G.J. Simitses, Buckling of moderately thick, laminated cylindrical shells under torsion, AIAA Journal, 32, 3, 639–647, 1994.
  • 20. Y.S. Kim, G.A. Kardomateas, A. Zureick, Buckling of thick orthotropic cylindrical shells under torsion, Journal of Applied Mechanics, 66, 1, 41–50, 1999.
  • 21. X. Zhang, Q. Han, Buckling and postbuckling behaviors of imperfect cylindrical shells subjected to torsion, Thin-Walled Structures, 45, 1035–1043, 2007.
  • 22. A.M. Najafov, A.H. Sofiyev, N. Kuruoglu, Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundations, Meccanica, 48, 829–840, 2013.
  • 23. A.H. Sofiyev, N. Kuruoglu, Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium, Composites Part B, 45, 1133–1142, 2013.
  • 24. H. Shen, Torsional buckling and postbuckling of FGM cylindrical shells in thermal environments, International Journal of Non-Linear Mechanics, 44, 644–657, 2009.
  • 25. H.S. Shen, Torsional postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Composite Structures, 116, 477–488, 2014.
  • 26. H. Huang, Q. Han, Nonlinear buckling of torsion-loaded functionally graded cylindrical shells in thermal environments, European Journal of Mechanics/A Solids, 29, 42–48, 2010.
  • 27. H. Huang, Q. Han, N. Feng, X. Fan, Buckling of functionally graded cylindrical shells under combined loads, Mechanics of Advanced Materials and Structures, 18, 5, 337–346, 2011.
  • 28. D.V. Dung, L.K. Hoa, Research on nonlinear torsional buckling and post-buckling of eccentrically stiffened functionally graded thin circular cylindrical shells, Composites Part B: Engineering, 51, 300–309, 2013.
  • 29. D.V. Dung, L.K. Hoa, Nonlinear torsional buckling and postbuckling of eccentrically stiffened FGM cylindrical shells in thermal environment, Composites Part B: Engineering, 69, 378–388, 2015.
  • 30. V.H. Nam, N.T. Phuong, K.V. Minh, P.T. Hieu, Nonlinear thermo-mechanical buckling and post-buckling of multilayer FGM cylindrical shell reinforced by spiral stiffeners surrounded by elastic foundation subjected to torsional loads, European Journal of Mechanics/A Solids, 72, 393–406, 2018.
  • 31. V.H. Nam, N.T. Trung, L.K. Hoa, Buckling and postbuckling of porous cylindrical shells with functionally graded composite coating under torsion in thermal environment, Thin-Walled Structures, 144, p. 106253, 2019.
  • 32. M. Stein, J.A. McElman, Buckling of segments of toroidal shells, AIAA Journal, 3, 9, 1704–1709, 1965.
  • 33. P.A. Cooper, Buckling of nearly cylindrical shells under lateral pressure, AIAA Journal, 10, 2, 232–234, 1971.
  • 34. J.W. Hutchinson, Initial postbuckling of toroidal shell segments, International Journal of Solids and Structures, 3, 1, 97–115, 1967.
  • 35. D.G. Ninh, D.H. Bich, Nonlinear buckling of eccentrically stiffened functionally graded toroidal shell segments under torsional load surrounded by elastic foundation in thermal environment, Mechanics Research Communications, 72, 1–15, 2016.
  • 36. V.T. Long, H.V. Tung, Mechanical buckling analysis of thick FGM toroidal shell segments with porosities using Reddy’s higher order shear deformation theory, Mechanics of Advanced Materials and Structures, 29, 27, 5923–5932, 2022.
  • 37. V.T. Long, H.V. Tung, Buckling behavior of thick porous functionally graded material toroidal shell segments under external pressure and elevated temperature including tangential edge restraint, Journal of Pressure Vessel Technology, 144, 5, p. 051310, 2022.
  • 38. P.T. Hieu, H.V. Tung, Thermomechanical nonlinear buckling of pressure-loaded carbon nanotube reinforced composite toroidal shell segment surrounded by an elastic medium with tangentially restrained edges, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233, 9, 3193–3207, 2019.
  • 39. P.T. Hieu, H.V. Tung, Thermal and thermomechanical buckling of shear deformable FG-CNTRC cylindrical shells and toroidal shell segments with tangentially restrained edges, Archive of Applied Mechanics, 90, 7, 1529–1546, 2020.
  • 40. L.T.N. Trang, H.V. Tung, Thermal nonlinear stability of functionally graded porous material nearly cylindrical shells with surrounding elastic media and tangentially restrained edges, Mathematical Methods in the Applied Sciences, 46, 7285–7304, 2023.
  • 41. L.T.N. Trang, H.V. Tung, Postbuckling behavior of functionally graded porous toroidal shell segments with surrounding elastic media subjected to combined mechanical loads, ZAMM, 2023, doi: 10.1002/zamm.202200257.
  • 42. Y.S. Touloukian, Thermophysical Properties of High Temperature Solid Materials, MacMillan, New York, 1967.
  • 43. J.N. Reddy, C.D. Chin, Thermomechanical analysis of functionally graded cylinders and plates, Journal of Thermal Stresses, 21, 593–626, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5b93f2b-685a-477b-aa77-7632f55fcfed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.