PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Maastrichtian climate changes : the calcareous nannofossil record from flysch deposits of the Outer Carpathians

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Outer Carpathians are known for a few sections, where transitions from the Upper Cretaceous to the Palaeogene, including the K-Pg boundary interval, were described. One of them, the Bąkowiec section in the Skole Nappe, was examined with reference to the record of biostratigraphy and palaeoenvironmental changes, mainly based on the analysis of calcareous nannofossil assemblages. This study shows no evidence for the K-Pg boundary; however, the presence of the nannofossil species Micula prinsii, marking the topmost Maastrichtian UC20dTP Zone, was noted. The appearance of this low-latitude taxon and relevant changes in the composition of nannofossil assemblages indicate an influx of Tethyan warm water into the northern Carpathian basins during the latest Maastrichtian, shortly before the K-Pg boundary event. Therefore, the authors infer that the upper part of the Bąkowiec section recorded the latest Maastrichtian warming of climate, probably triggered by Deccan volcanic activity.
Rocznik
Strony
447--462
Opis fizyczny
Bibliogr.109 poz., rys., tab., wykr.
Twórcy
  • Jagiellonian University, Faculty of Geography and Geology, Institute of Geological Sciences, Gronostajowa 3a, Kraków, Poland
  • Jagiellonian University, Faculty of Geography and Geology, Institute of Geological Sciences, Gronostajowa 3a, Kraków, Poland
Bibliografia
  • 1. Abrajevitch, A., Font, E., Florindo, F. & Roberts, A. P., 2015. Asteroid impact vs. Deccan eruptions: The origin of low magnetic susceptibility beds below the Cretaceous- Paleogene boundary revisited. Earth and Planetary Science Letters, 430: 209-223.
  • 2. Abramovich, S., Yovel-Corem, S., Almogi-Labin, A. & Benjamini, C., 2010. Global climate change and planktic foraminiferal response in the Maastrichtian. Paleoceanography, 25: PA2201.
  • 3. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V., 1980. Extraterrestrial cause for the Cretaceous-Tertiary Extinction. Science, 208: 1095-1108.
  • 4. Anderberg, M. R., 1973. Cluster Analysis for Applications. Academic Press, New York, 359 pp.
  • 5. Barrell, J., 1917. Rhythms and the measurement of geologic time. Geological Society of America Bulletin, 28: 745-904. Barrera, E., 1994. Global environmental changes preceding the Cretaceous-Tertiary boundary: Early-late Maastrichtian transition. Geology, 22: 877-880.
  • 6. Barrera, E. & Keller, G., 1990. Stable isotope evidence for gradual environmental changes and species survivorship across the Cretaceous/Tertiary boundary. Paleoceanography, 5: 867-890.
  • 7. Barrera, E. & Savin, S. M., 1999. Evolution of late Campanian-Maastrichtian marine climates and oceans. Evolution of the Cretaceous Ocean-Climate System, GSA Special Paper, 332: 245-282.
  • 8. Belcher, C. M. & Hudspith, V. A., 2017. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms. New Phytologist, 213: 1521-1532.
  • 9. Bergen, J. A. & Sikora, P. J., 1999. Microfossil diachronism in southern Norwegian North Sea chalks: Valhall and Hod fields. In: Jones, R. W. & Simmons, M. D. (eds), Biostratigraphy in Production and Development Geology. Geological Society, London, Special Publications, 152: 85-111.
  • 10. Bojar, A.-V. & Bojar, H.-P., 2013. The Cretaceous-Paleogene boundary in the East Carpathians, Romania: Evidence from geochemistry, mineralogy and calcareous nannofossils. In: Bojar, A.-V, Melinte-Dobrinescu, M. C. & Smith, J. (eds), Isotopic studies in Cretaceous Research. Geological Society, London, Special Publications, 382: 105-122.
  • 11. Bown, A. H. & Young, J. R., 1998. Techniques. In: Bown, P. R. (ed.), Calcareous Nannofossils Biostratigraphy. Kluwer Academic Publisher, Dordrecht, Boston, London, pp. 16-28.
  • 12. Bown, P. R., Less, J. A. & Young, J. R., 2004. Calcareous nannoplankton evolution and diversity through time. In: Thierstein, H. R. & Bown, P. R. (eds), Coccolithophores from Molecular Processes to Global Impact. Springer, New York, pp. 481-508.
  • 13. Bromowicz, J., 1986. Petrographic differentiation of source areas of Ropianka Beds east of Dunajec River (Outer Carpathians, Poland). Annales Societatis Geologorum Poloniae, 56: 253-276.
  • 14. Brusatte, S.L., Butler, R.J., Barrett, P.M., Carrano, M.T., Evans, D.C., Lloyd, G. T., Mannion, P. D., Norell, M. A., Peppe, D. J., Upchurch, P. & Williamson, T. E., 2015. The extinction of the dinosaurs. Biological Reviews, 90: 628-642.
  • 15. Burnett, J. A., 1998. Upper Cretaceous. In: Bown, P. R. (ed.), Calcareous Nannofossils Biostratygraphy. Cambridge University Press, Cambridge, pp. 132-199.
  • 16. Bukry, D., 1973. Coccolith and silicoflagellate stratigraphy, Tasman Sea and southwestern Pacific Ocean, Deep Sea Drilling Project, Leg 21. Initial Reports Deep Sea Drilling Project, 21: 885-893.
  • 17. Chiu, T.-C. & Broecker, W. S., 2008. Toward better paleocarbonate ion reconstructions: new insight regarding the CaCO3 size index. Paleoceanography, 23: PA2216, doi:10.1029/2008PA001599.
  • 18. Dameron, S. N., Leckie, R. M., Clark, K., MacLeod, K. G., Thomas, D. J. & Lees, J. A., 2017. Extinction, dissolution, and possible ocean acidification prior to the Cretaceous/Paleogene (K/Pg) boundary in the tropical Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 433-454.
  • 19. Davis, Ch. C., Webb, C. O., Wurdack, K. J., Jaramillo, C. A. & Donoghue, M. J., 2005. Explosive radiation of Malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. American Naturalist, 165: 36-65.
  • 20. Davis, J. C., 1986. Statistics and Data Analysis in Geology. 3rd Edition. John Wiley & Sons Inc., New York, pp. 461-646.
  • 21. Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F. & Deconinck, J.-F. F., 2016. A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration. Nature Communications, 7: 10316.
  • 22. Dubicka, Z. & Peryt, D., 2012. Latest Campanian and Maastrichtian palaeoenvironmental changes: Implications from an epicontinental sea (SE Poland and western Ukraine). Cretaceous Research, 37: 272-284.
  • 23. Elorza, J. & Garcla-Garmilla, F., 1998. Palaeoenvironmental implications and diagenesis of inoceramid shells (Bivalvia) in the mid-Maastrichtian beds of the Sopelana, Zumaya and Bidart sections (coast of the Bay of Biscay, Basque Country). Palaeogeography, Palaeoclimatology, Palaeoecology, 141: 303-328.
  • 24. Erba, E., 2004. Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology, 52: 85-106.
  • 25. Eshet, Y. & Almogi-Labin, A., 1996. Calcareous nannofossils as paleoproductivity indicators in Upper Cretaceous organic-rich sequences in Israel. Marine Micropaleontology, 29: 37-61.
  • 26. Farris, J. A., 1969. On the cophenetic correlation coefficient. Systematic Biology, 18: 279-285.
  • 27. Frank, T. D. & Arthur, M. A., 1999. Tectonic forcings of Maastrichtian ocean-climate evolution. Paleoceanography, 14: 103-117.
  • 28. Gale, A. S., 2011. The Cretaceous world. In: Culver, S. J. & Rawson, P. F. (eds), Biotic Response to Global Change. The Last 145 Million Years. Cambridge University Press, Cambridge, pp. 4-19.
  • 29. Gardin, S., 2002. Late Maastrichtian to early Danian calcareous nannofossils at Elles (Northwest Tunisia). A tale of one million years across the K-T boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 178: 211-231.
  • 30. Gasiński, M. & Uchman, A., 2011. The Cretaceous-Paleogene boundary in turbiditic deposits identified to the bed: A case study from the Skole Nappe (Outer Carpathians, southern Poland). Geologica Carpathica, 62: 333-343.
  • 31. Giraudeau, J., 1992. Distribution of recent nannofossils beneath the Benguela system: southwest African continental margin. Marine Geology, 108: 219-237.
  • 32. Gómez-Alday, J. J., López, G. & Elorza, J., 2004. Evidence of climatic cooling at the Early/Late Maastrichtian boundary from inoceramid distribution and isotopes: Sopelana sections, Basque Country, Spain. Cretaceous Research, 25: 649-668.
  • 33. Hallam, A. & Perch-Nielsen, K., 1990. The biotic record of events in the marine realm at the end of the Cretaceous: calcareous, siliceous and organic-walled microfossils and macroinvertebrates. Tectonophysics, 171: 347-357.
  • 34. Hammer, 0., Harper, D. A. T. & Paul, D. R., 2001. Past: paleontological statistic software package for education and data analysis. Paleontologica Electronica, 4: 1-9.
  • 35. Hart, M. B., Feist, S. E., Hâkansson, E., Heinberg, C., Price, G. D., Leng, M. J. & Watkinson, P., 2005. The Cretaceous- Palaeogene boundary succession at Stevns Klint, Denmark: foraminifers and stable isotope stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 224: 6-26.
  • 36. Hassenkam, T., Johnsson, A., Bechgaard, K. & Stipp, S. L. S., 2011. Tracking single coccolith dissolution with pico- gram resolution and implications for CO2 sequestration and ocean acidification. Proceedings of the National Academy of Sciences, 108: 8571-8576.
  • 37. Hay, W. W., 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research, 29: 725-753.
  • 38. Hennebert, M., 2012. Hunting for the 405-kyr eccentricity cycle phase at the Cretaceous-Paleogene boundary in the Aïn Settara section (Kalaat Senan, central Tunisia). Carnets de Geologie, 5: 93-116.
  • 39. Hennebert, M., 2014. The Cretaceous-Paleogene boundary and its 405-kyr eccentricity cycle phase: A new constraint on radiometric dating and astrochronology. Carnets de Geologie, 14: 173-189.
  • 40. Henriksson, A. S., 1993. Biochronology of the terminal Cretaceous calcareous nannofossil Zone of Micula prinsii. Cretaceous Research, 14: 59-68.
  • 41. Huber, B. T., MacLeod, K. G., Watkins, D. K. & Coffin, M. F., 2018. The rise and fall of the Cretaceous Hot Greenhouse climate. Global and Planetary Change, 167: 1-23.
  • 42. Jugowiec-Nazarkiewicz, M., 2007. Calcareous nannoplankton from Upper Cretaceous pelagic facies of the Subsilesian Unit, Polish Outer Carpathians. Biuletyn Państwowego Instytutu Geologicznego, 426: 53-90. [In Polish, with English summary.]
  • 43. Keller, G., 2005. Biotic effects of late Maastrichtian mantle plume volcanism: implications for impacts and mass extinctions. Lithos, 79: 317-341.
  • 44. Keller, G., 2008. Cretaceous climate, volcanism, impacts, and biotic effects. Cretaceous Research, 29: 754-771.
  • 45. Keller, G. & Abramovich, S., 2009. Lilliput effect in late Maastrichtian planktic foraminifera: Response to environmental stress. Palaeogeography, Palaeoclimatology, Palaeoecology, 284: 47-62.
  • 46. Keller, G., Punekar, J. & Mateo, P., 2016. Upheavals during the Late Maastrichtian: Volcanism, climate and faunal events preceding the end-Cretaceous mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 137-151.
  • 47. Kędzierski, M., Gasiński, M. A. & Uchman, A., 2015. Last occurrence of Abathomphalus mayaroensis (Bolli) foraminiferid index of the Cretaceous-Paleogene boundary: the calcareous nannofossil proof. Geologica Carpathica, 66: 181-195.
  • 48. Kędzierski, M. & Leszczyński, S., 2013. A paleoceanographic model for the Late Campanian-Early Maastrichtian sedimentation in the Polish Carpathian Flysch basin based on nannofossils. Marine Micropaleontology, 102: 34-50.
  • 49. Kędzierski, M., Rodríguez-Tovar, F. J. & Uchman, A., 2011. Vertical displacement and taphonomic filtering of nannofossils by bioturbation in the Cretaceous-Palaeogene boundary section at Caravaca, SE Spain. Lethaia, 44: 321-328.
  • 50. Kinkel, H., Baumann, K. H. & Cepek, M., 2000. Coccolithophores in the equatorial Atlantic Ocean: Response to seasonal and Late Quaternary surface water variability. Marine Micropaleontology, 39: 87-112.
  • 51. Kotlarczyk, J., 1978. Stratigraphy of the Ropianka Formation or of Inoceramian Beds in the Skole Unit of the Flysch Carpathians. Prace Geologiczne, Polska Akademia Nauk, Oddział w Krakowie, Komisja Nauk Geologicznych, 108: 1-82. [In Polish, with English summary.]
  • 52. Książkiewicz, M., 1956. Geology of the northern Carpathians. Geologische Rundschau, 45: 369-411.
  • 53. Larina, E., Garb, M., Landman, N., Dastas, N., Thibault, N., Edwards, L., Phillips, G., Rovelli, R., Myers, C. & Naujokaityte, J., 2016. Upper Maastrichtian ammonite biostratigraphy of the Gulf Coastal Plain (Mississippi Embayment, southern USA). Cretaceous Research, 60: 128-151.
  • 54. Larson, R. L., 1991. Latest pulse of Earth: Evidence for a mid-Cretaceous super-plume. Geology, 19: 547-550.
  • 55. Less, J. A., 2002. Calcareous nannofossils biostratigraphy illustrates paleoclimate changes in The Late Cretaceous Indian Ocean. Cretaceous Research, 23: 537-634.
  • 56. Lees, J. A., Bown, P. R. & Mattioli, E., 2005. Problems with proxies? Cautionary tales of calcareous nannofossil paleoenvironmental indicators. Micropaleontology, 51: 333- 343.
  • 57. Lees, J. A., Bown, P. R., Young, J. R. & Riding, J. B., 2004. Evidence for annual records of phytoplankton productivity in the Kimmeridge Clay Formation coccolith stone bands (Upper Jurassic, Dorset, UK). Marine Micropaleontology, 52: 29-49.
  • 58. Li, L. & Keller, G., 1998. Maastrichtian climate, productivity and faunal turnovers in planktic foraminifera in South Atlantic DSDP sites 525A and 21. Marine Micropaleontology, 33: 55-86.
  • 59. Li, L. & Keller, G., 1999. Variability in Late Cretaceous climate and deep waters: Evidence from stable isotopes. Marine Geology, 161: 171-190.
  • 60. Linnert, C., Engelke, J., Wilmsen, M. & Mutterlose, J., 2016. The impact of the Maastrichtian cooling on the marine nutrient regime - evidence from midlatitudinal calcareous nannofossils. Paleoceanography, 31: 694-714.
  • 61. Linnert, C., Robinson, S. A., Lees, J. A., Bown, P. R., Pérez- Rodríguez, I., Petrizzo, M. R., Falzoni, F., Littler, K., Arz, J. A. & Russell, E. E., 2014. Evidence for global cooling in the Late Cretaceous. Nature Communications, 5: 4194.
  • 62. Łapcik, P., 2018. Sedimentary processes and architecture of Upper Cretaceous deep-sea channel deposits: a case from the Skole Nappe, Polish Outer Carpathians. Geologica Carpathica, 69: 71-88.
  • 63. Łapcik, P., Kowal-Kasprzyk, J. & Uchman, A., 2016. Deepsea mass-flow sediments and their exotic blocks from the Ropianka Formation (Campanian-Paleocene) in the Skole Nappe: a case from the Wola Rafałowska section (SE Poland). Geological Quarterly, 60: 301-316.
  • 64. MacLean, D. M., 1985. Deccan traps mantle degassing in the terminal Cretaceous marine extinctions. Cretaceous Research, 6: 235-239.
  • 65. MacLeod, K. G., 1994. Bioturbation, inoceramid extinction, and mid-Maastrichtian ecological change. Geology, 22: 139-142.
  • 66. MacLeod, K. G. & Huber, B., 1996. Reorganization of deep ocean circulation accompanying a Late Cretaceous extinction event. Nature, 380: 422-425.
  • 67. MacLeod, K. G., Isaza Londoño, C., Martin, E. E., Jiménez Berrocoso, Á. & Basak, C., 2011. Changes in North Atlantic circulation at the end of the Cretaceous greenhouse interval. Nature Geoscience, 4: 779-782.
  • 68. Marshall, C. R. & Ward, P. D., 1996. Sudden and gradual mollusc extinctions in the Latest Cretaceous of Western European Tethys. Science, 274: 1360-1363.
  • 69. Masse, J. P., Philip, J. & Camoin, G., 1995. The Cretaceous Tethys. In: Nairn, A. E. M., Ricou, L. E., Vrielynck, B. & Dercourt, J. (eds), The Tethys Ocean. Springer, Boston, pp. 215-236.
  • 70. Mateo, P., Keller, G., Punekar, J. & Spangenberg, J. E., 2017. Early to Late Maastrichtian environmental changes in the Indian Ocean compared with Tethys and South Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 121-138.
  • 71. Miall, A. D., 2014. Updating uniformitarianism: stratigraphy as just a set of ‘frozen accidents'. Geological Society, Special Publications, 404: 11-36.
  • 72. Molina, E., Alegret, L., Arenillas, I., Arz, J. A., Gallala, N., Hardenbol, J., Von Salis, K., Steurbaut, E., Vandenberghe, N. & Zaghbib-Turki, D., 2006. The global boundary stratotype section and point for the base of the Danian Stage (Paleocene, Paleogene, “Tertiary”, Cenozoic) at El Kef, Tunisia - original definition and revision. Episodes, 29: 263-273.
  • 73. Nimura, T., Ebisuzaki, T. & Maruyama, S., 2016. End-Cretaceous cooling and mass extinction driven by a dark cloud encounter. Gondwana Research, 37: 301-307.
  • 74. Nordt, L., Atchley, S. & Dworkin, S., 2003. Terrestrial evidence for two greenhouse events in the latest Cretaceous. GSA Today, 13: 4-9.
  • 75. Olsson, R. K., Wright, J. D. & Miller, K. G., 2001. Paleobiogeography of Pseudotextularia elegans during the latest Maastrichtian global warming event. Journal of Foraminiferal Research, 31: 275-282.
  • 76. Pardo, A. & Keller, G., 2007. Guembelitria blooms-environmental catastrophes index. In: Sinha, D. K. (ed.), Micropaleontology: Application in Stratigraphy and Paleoocenography. Narosa, New Dehli, India, pp. 211-225.
  • 77. Pardo, A. & Keller, G., 2008. Biotic effects of environmental catastrophes at the end of the Cretaceous and Early Tertiary: Guembelitria and Heterohelix Blooms. Cretaceous Research, 29: 1058-1073.
  • 78. Pavlishina, P. & Wagreich, M., 2012. Biostratigraphy and paleoenvironments in a northwestern Tethyan Cenomanian-Turonian boundary section (Austria) based on palynology and calcareous nannofossils. Cretaceous Research, 38: 103-112.
  • 79. Peralta-Medina, E. & Falcon-Lang, H. J., 2012. Cretaceous forest composition and productivity inferred from a global fossil wood database. Geology, 40: 219-222.
  • 80. Perch-Nielsen, K., 1981. Les nannofossils calcaires à la limite Crétacé-Tertiary pres d'El Kef, Tunisie. Cahiers de Micropaleontologie, 3: 25-37.
  • 81. Punekar, J., Keller, G., Khozyem, H. M. & Spangenberg, J., 2016. A multi-proxy approach to decode the end-Cretaceous mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 116-136.
  • 82. Rajchel, J., 1990. Lithostratigraphy of the Upper Paleocene and Eocene deposits in the Skole Unit. Zeszyty Naukowe AGH, Geologia, 48: 1-112. [In Polish, with English summary.]
  • 83. Roth, P. H. & Bowdler, J. L., 1981. Middle Cretaceous calcareous nannoplankton biogeography and oceanography of the Atlantic and Indian oceans. SEMP Special Publications, 32: 517-546.
  • 84. Sakamoto, M., Benton, M. J. & Venditti, C., 2016. Dinosaurs in decline tens of millions of years before their final extinction. Proceedings of the National Academy of Sciences of the United States of America, 113: 5036-5040.
  • 85. Shannon, C. E. & Weaver, W., 1949. The Mathematical Theory of Communication. University of Illinois Press, Champaign, 144 pp.
  • 86. Sheldon, E., Ineson, J. & Bown, P., 2010. Late Maastrichtian warming in the Boreal Realm: Calcareous nannofossil evidence from Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology, 295: 55-75.
  • 87. Sissingh, W., 1977. Biostratigraphy of Cretaceous calcareous nannoplankton. Geologie en Mijnbouw, 56: 37-65.
  • 88. Sloan, R. E., Rigby, J. K., Jr., Van Valen, L. M. & Gabriel, D., 1986. Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek Formation. Science, 232: 629-633.
  • 89. Sprain, C. J., Renne, P. R., Vanderkluysen, L., Pande, K., Self, S. & Mittal, T., 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science, 363: 866-870.
  • 90. Steinmetz, J. C., 1994. Sedimentation of coccolithophores. In: Winter, A. & Siesser, W. G. (eds), Coccolithophores. Cambridge University Press, Cambridge, pp. 179-197.
  • 91. Tan, P. N., Steinbach, M. & Kumar, V., 2006. Cluster analysis: Basics concepts and algorithms. In: Introduction to Data Mining. Pearson Addison-Wesley, Boston, pp. 125-145.
  • 92. Tantawy, A. A., Keller, G. & Pardo, A., 2009. Late Maastrichtian volcanism in the Indian Ocean: Effects on calcareous nannofossils and planktic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 284: 63-87.
  • 93. Thibault, N., Galbrun, B., Gardin, S., Minoletti, F. & Le Callonnec, L., 2016. The end-Cretaceous in the southwestern Tethys (Elles, Tunisia): orbital calibration of paleoenvironmental events before the mass extinction. International Journal of Earth Sciences, 105: 771-795.
  • 94. Thibault, N. & Gardin, S., 2010. The calcareous nannofossil response to the end-Cretaceous warm event in the Tropical Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 291: 239-252.
  • 95. Thibault, N., Gardin, S. & Galbrun, B., 2010. Latitudinal migration of calcareous nannofossil Micula murus in the Maastrichtian: Implications for global climate change. Geology, 38: 203-206.
  • 96. Thibault, N. & Husson, D., 2016. Climatic fluctuations and sea-surface water circulation patterns at the end of the Cretaceous era: Calcareous nannofossil evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 152-164.
  • 97. Thierstein, H. R., 1976. Mesozoic calcareous nannoplankton biostratigraphy of marine sediments. Marine Micropaleontology, 1: 325-362.
  • 98. Thierstein, H. R., 1980. Selective dissolution of Late Cretaceous and Earliest Tertiary calcareous nannofossils: experimental evidence. Cretaceous Research, 2: 165-176.
  • 99. Thierstein, H. R., 1981. Late Cretaceous nannoplancton and the change at the Cretaceous-Tertiary boundary. In: Warme, J. E., Douglas, R. G. & Winterer, E. L. (eds), The Deep Drilling Project: a decade of progress. Society of Economic Paleontologists and Geologists, Special Publication, 32: 355-394.
  • 100. Voigt, S., Gale, A. S., Jung, C. & Jenkyns, H. C., 2012. Global correlation of Upper Campanian-Maastrichtian successions using carbon-isotope stratigraphy: development of a new Maastrichtian timescale. Newsletters on Stratigraphy, 45: 25-53.
  • 101. Watkins, D. K., 1992. Upper Cretaceous nannofossils from leg 120, Kergulen Plateau, Southern Ocean. Proceedings of the Ocean Drilling Program, Scientific Results, 120: 343-370.
  • 102. Watkins, D. K. & Self-Trail, J. N., 2005. Calcareous nannofossils evidence from the existence of the Gulf Stream during the late Maastrichtian. Paleoceanography, 20: 1-9.
  • 103. Watkins, D. K., Wise, S. W., Jr., Pospichal, J. J. & Crux, J., 1996. Upper Cretaceous calcareous nannofossils biostratigraphy and paleooceanography of the Southern Ocean. In: Moguilevsky, A. & Whatley, R. (eds), Microfossils and Oceanic Environments. University of Wales, Aberystwyth, pp. 355-381.
  • 104. Wdowiarz, S., 1949. Structure géologique des Karpates marginales au sud-est de Rzeszów. Biuletyn Państwowego Instytutu Geologicznego, 11: 1-51. [In Polish, with French summary.]
  • 105. Wing, S. L. & Boucher, L. D., 1998. Ecological aspects of the Cretaceous flowering plant radiation. Annual Review of Earth and Planetary Sciences, 26: 379-421.
  • 106. Winter, A., Reiss, Z. & Luz, B., 1979. Distribution of living coccolithophore assemblages in the Gulf of Elat ('Aqaba). Marine Micropaleontology, 4: 197-223.
  • 107. Wise, S. W., Jr., 1983. Mesozoic and Cenozoic calcareous nannofossils recovered by Deep Sea Drilling Project Leg 71 in the Falkland Plateau region, southwest Atlantic Ocean. Initial Reports Deep Sea Drilling Project, 71: 481-550.
  • 108. Young, J. R., 1994. Function of Coccoliths. In: Winter, A. & Siesser, W. G. (eds), Coccolithophores. Cambridge University Press, Cambridge, pp. 63-82.
  • 109. Ziveri, P., Thunell, R. C. & Rio, D., 1995. Export production of coccolithophores in an upwelling region: results from San Pedro Basin, Southern California Borderlands. Marine Micropaleontology, 24: 335-358.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5b56202-0360-4715-987e-f51cd2dcde18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.