PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical study and application for pyrolusite separation from high manganese-iron ore in the presence of microorganisms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Paenibacillus polymyxa bacteria strain as a surface modifier in a flotation process could remove 64.89% of MnO2 from high manganese iron ore. A concentrate containing 3.7% MnO2, 0.5% SiO2 and 71.30% Fe2O3, with a hematite recovery of 72.46% is produced from a feed containing 8.79% MnO2, 0.49% SiO2 and 67.90% Fe2O3. The bio-flotation results indicated that such type of bacteria is selective for upgrading El-Gedida iron ore from the Western Desert of Egypt. The role of Paenibacillus polymyxa on the surface properties of pyrolusite and hematite single minerals was investigated through zeta potential, FTIR and adsorption measurements.
Słowa kluczowe
Rocznik
Strony
273--283
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
  • Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University
  • Central Metallurgical Research and Development Institute, (CMRDI).
  • Central Metallurgical Research and Development Institute, (CMRDI)
  • Central Metallurgical Research and Development Institute, (CMRDI).
  • Central Metallurgical Research and Development Institute, (CMRDI).
Bibliografia
  • ABDEL-KHALEK, M.A., EL-MIDANY, A.A., 2013. Application of Bacillus subtilis for reducing ash and sulfur in coal,Environmental Earth Sciences, 70, 2, 753-760.
  • ABDEL-KHALEK, N.A., SELIM, K.A., HASSAN, M.M.A., MOHARRAM, M.R., SALEH, A.M., RAMADAN, A.M., 2017. Bio-flocculation of Egyptian High Manganese Iron Ore Using Paenibacillus polymyxa Bacteria, International Research Journal of Engineering and Technology (IRJET). 4(4):1113-1120.
  • AHMED, H.A.M., EL-MIDANY, A.A., Abdel-Khalek N.A., 2007. Statistical optimization of some parameters affecting flocculation of Egyptian iron ore, Mineral Processing and Extractive Metallurgy, Trans. Inst. Min. Metall. C, 116, 4, 239-244.
  • ATTUI, L., RYZHONKOV, D.I., SORIN, S.B., DROZDOV, N.N., 1999. Theory of metallurgical processes: joint reduction of oxide mixtures containing Fe2O3, MnO2, and NiO with solid carbon, Steel. Trans., l, 29, 47-49.
  • BAIOUMY, H.M., KHEDR, M.Z., AHMED, A.H., 2013. Mineralogy, geochemistry and origin of Mn in the high-Mn iron ores, Bahariya Oasis, Egypt, Ore Geology Reviews, 53, 63-76.
  • BROCK, T.D., ADIGAN, M.T., MARTIN, J.M., PARKER, J., 1994. Biology of microorganisms, prentice Hall Englewood Gliffs, New Jersey.
  • CORONA-ESQUVEL, R., ORTEGA-GUTIERREZ, F., REYES-SALAS, M., LOZANO-SANTACRUZ, R., MIRANDAGASCA, M.A., 2000. Mineralogical study of the La Hueca Cretaceous iron-manganese deposit, Michoacan, Southwestern Mexico, Rev. Mex. Cienc. Geol., 17, 143-153.
  • DE MESQUITAA, L.M.S., LINSB, F.F., TOREMA, M.L., 2003. Interaction of a hydrophobic bacterium strain in a hematite–quartz flotation system, International J. of Mineral Processing, 71, 31-44.
  • DEO, N., NATARAJAN, K.A., 1997. Surface modification and biobeneficiation of some oxide minerals using Bacillus polymyxa, Minerals and Metallurgical processing. 14(3):32-39.
  • DEO, N., NATARAJAN, K.A., 1999. Role of Qorundum-Adpted strains of Bacilluspolymyxa in the separation of hematite and alumina, Minerals and Metallurgical Processing, 62, 4, 29-34.
  • DEO, N., NATARAJAN, K.A., 2001. Role of Qorundum-Adpted strains of Bacilluspolymyxa in the separation of hematite and alumina, Mineral Biotechnology, SME, USA, 55-65.
  • DEO, N., NATARAJAN, K.A., SOMASUNDARAN, P., 2001. Mechanisms of adhesion of P. polymyxa onto hematite, corundum and quartz, international Journal of Mineral Processing, 62, 27-39.
  • DICKSON, J.S., KOOHMARAIE, M., 1989. Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces, Appl. Environ. Microbiol, vol. 55 no. 4, 832-836.
  • EL-GEASSSY, A., NASR, M.I., YOUSEF, M.A., KHEDR, M.H., BAHGAT, M., 2008. Behavior of manganese oxides during magnetizing reduction of Bahariya iron ore by CO/CO2 mixture, Iron mak. Steel mak., 27, 117-126.
  • GEOGHEGAN, M., ANDREWS, J., BIGGS, C., EBOIGBODIB, K., ROLFE, S., SCHOLES, J., OJEDA, J.J., 2007. The Polymer Physics & Chemistry of Microbial Cell Attachment and Adhesion, Faraday Discussions, 139, 85-103.
  • JIANG, W., SAXENA, A., SONG, B., WARD, B.B., BEVERIDGE, T.J., MYNENI, S.C.B., 2004. Elucidation of functional groups on g-positive and negative bacterial surfaces using Infrared Spectroscopy, Langmuir, 20, 11433-11442.
  • NATARAJAN, K.A., DEO, N., 2000. Microbially induced processing of mineral fines, Processing of Fines. 2, 317-331.
  • NATARAJAN, K.A., DEO, N., 2001. Role of bacterial interaction and bioreagents in iron ore notation, International Journal of Mineral Processing 62(1-4):143-157, DOI: 10.1016/S0301-7516(00)00049-1.
  • RAO, K.H., VILINSKA, A., CHEMYSHOVA, I.V., 2010, Minerals bioprocessing R&D needs in mineral bio-beneficiation, Hydrometallurgy, 104, 465-470.
  • RONG, X.M., HUANG, Q.Y., HE, X.M., CHEN, H., CAI, P., LIANG, W., 2008. Interaction of Pseudomonas putida with kaolinite and montmorillonite: A combination study by equilibrium adsorption, ITC, SEM and FTIR. Colloids and Surfaces B: Biointerfaces, 64, 1, 49-55.
  • SAAD, N.A., ZIDAN, B.I., KHLIL, K.I., 1994. Geochemistry and origin of the manganese deposits in the Umm Bogma region, Sinai, Egypt, Journal of African Earth Sciences, 19, 109-116.
  • SALEH, S., 2013. Role of Bacteria in beneficiation of iron ore, M.Sc. Thesis, Helwan University, Egypt.
  • SARVAMANGALA, H., NATARAJAN, K.A., 2012. Biobeneficiation of Iron Ores. International Journal of Mining Engineering and Mineral Processing, 1(2): 21-30
  • SELIM, K.A., ROSTOM, M., 2018. Bioflocculation of (Iron Oxide – Silica) System Using Bacillus Cereus Bacteria Isolated from Egyptian Iron Ore Surface, Egyptian Journal of Petroleum 27 (2): 235–40.
  • SHASHIKALA, A.R., RAICHUR, A.M., 2002. Role of interfacial phenomena in determining adsorption of Bacillus polymyxa onto hematite and quartz, Colloids and Surfaces B: Biointerfaces, 24, 11-20.
  • SMITH, R.W., MISHRA, M., 1991. Mineral bioprocessing—an overview. In: Smith, R.W., Mishra, M. (Eds.), Mineral bioprocessing. The Minerals Metals and Materials Society, Pennsylvania, 3–26.
  • SOLOJENKEN, P.M., LYUBAVINA, L.L., LARIN, V.K., BERGELSON, L.D., DYATLOVITSKAYA, E.V., 1976. Bull. Nonferrous Metallurgy, 16, 21.
  • SOMASUNDARAN, P., REN, Y., RAO, M.Y., 1998. Application of biological processes in mineral processing, Colloids and Surfaces, 133, 13-33.
  • SPARKS, J., MARIA, E., GONZA, R., EL-TABONI, E., FREEMAN, C.L., HALL, S.A., Kakonyi, G., LINDA, L., BANWARTB, S.A., HARDING, J.H., 2015. Adsorption of poly acrylic acid onto the surface of calcite: an experimental and simulation study, Physical Chemistry Chemical Physics. 17(41): 27357-27365.
  • TERAYAMA, K., ISHIGURO, T., WATANABE, H., 1996. Reduction mechanism of iron-manganese oxide with carbon, Mater. Trans., 37, 1247-1250.
  • URBAN, H., STRIBRNY, B., LIPPOLT, H., 1992. Iron and manganese deposits of the Urucum district, Mato Grosso do Sul, Brazil, Economic Geology, 87, 1375-1392.
  • VAN LOOSDRECHT, M.C.M., LYKLEMA, J., NORDE, W., SCHRAA, G., ZEHNDER, A.J., 1987. Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion. Appl. Environ. Microbiol. (53) 1898–1901.
  • VIJAYALAKSHMI, S.P., RAICHUR, A.M., 2003. The utility of Bacillus subtitles as a bio-flocculent for coal, Colloids and Surfaces B., 29, 265-275.
  • VILINSKA, A., RAO, K.H., 2008. Leptosririllum Ferrooxiants-sulfide mineral interactions with ref. to bio flotation and bio flocculation, Trans. Nonferrous Met. Soc. China, 18, 1403-1409.
  • YANG, Z., FENG, Y., LI, H., WANG, W., QING, T., 2014. Effect of biological pretreatment on flotation recovery of pyrolusite. Transactions of Nonferrous Metals Society of China, 24, 1571-1577.
  • YASSIN, K.E., 2013. Flotation of iron ores using microorganisms as a surface modifier, M.Sc. Thesis, Faculty of Science, Chemistry Dept., Helwan University, Egypt.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5b40cba-88cc-4d2a-958f-d1da7227809c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.