PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spiral resonator manufactured on AlN ceramics to filter the coupled wave between patch antennas

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this paper was to present an alternative technique of manufacturing the unit cells of spiral-shaped resonators (SR) on the aluminium nitride (AlN) ceramics. In this technique the AlN plane surface is irradiated by the Yb:glass medium-power laser (1.06 μm). As a result of the irradiation by a focused laser beam (a laser beam power up to 20 W), the rupture of the aluminium and nitrogen physical bonds occurs. Under such circumstances the conductive aluminium “paths” are formed on the originally insulating ceramic surface. Upon obtaining low ohmic conductive paths, this method makes for the feasible manufacturing of metamaterial structures. In carried out studies, the usage of such structures to suppress the coupling between pairs of patch antennas has been examined. The improvement of the mutual coupling at the level of 10 dB has been obtained. One of the advantages of the demonstrated method is a possibility to perform the selective and direct metallization of the AlN ceramics surface without using any mask as opposed to photolithography. It greatly reduces the implementation time of the projected metamaterial structures.
Twórcy
autor
  • Laser & Fiber Electronics Group, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego, 50-370 Wrocław, Poland
autor
  • Microwave Group, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego, 50-370 Wrocław, Poland
  • Laser & Fiber Electronics Group, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego, 50-370 Wrocław, Poland
autor
  • Microwave Group, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego, 50-370 Wrocław, Poland
  • Laser & Fiber Electronics Group, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego, 50-370 Wrocław, Poland
Bibliografia
  • 1. V. Veselago, “The electrodynamics of substances with simultaneously negative values of μ and ε”, Soviet Physics Uspekhi 92, 517-526 (1967).
  • 2. J. B. Pendry, A. J. Holden, D. J. Robbins, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures”, Phys. Rev. Lett. 76, 4773-4776 (1996).
  • 3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena”, IEEE T. Microwave Theory Tech. 47, 2075-2084 (1999).
  • 4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures”, J. Phys.: Condens. Matter. 10, 4785-4809 (1998).
  • 5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity”, Phys. Rev. Lett. 84, 4184-4187 (2000).
  • 6. R. Marque’s, L. Jelinek, M. J. Freire, J. D. Baena, and M. Lapine, “Bulk metamaterials made of resonant rings”, Proc. IEEE – PIEEE 99, 1660-1668 (2011).
  • 7. J. D. Baena, L. Jelinek, R. Marqu’es, and M. Silveirinha, “Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials”, Phys. Rev. A78, 013842-013842, (2008).
  • 8. M. K. Taher Al-Nuaimi, “Low profile dipole antenna design using square SRRs artificial ground plane”, European Wireless Conf., Lucca, 190-193, 2010.
  • 9. M. K. Taher Al-Nuaimi and W. G. Whittow, “Novel planar AMC for low profile antenna applications”, Loughborough Antennas & Propagation Conf., Leicestershire, 145-148, 2009.
  • 10. S. Oh and L. Shafai, “Artificial magnetic conductor using split ring resonators and its applications to antennas”, Microwave and Optical Technol. Lett. 48, 329-34, (2006).
  • 11. F. Bilotti, A. Alu, and L. Vegni, “Design of miniaturized metamaterial patch antennas with μ – negative loading”, IEEE T. Antennas Propag. 56, 1640-1647, (2008).
  • 12. O. Quevedo-Teruel, M. N. Mou Kehn, and E. Rajo-Iglesias, “Dual-band patch antennas based on short-circuited split ring resonators”, IEEE T. Antennas Propag. 59, 2758-2765, (2011).
  • 13. C. J. Sanchez-Fernandez, O. Quevedo-Teruel, J. Requena-Carrion, L. Inclan-Sanchez, and E. Rajo-Iglesias, “Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices”, IET Microw. Antennas Propag. 4, 1048-1055, (2010).
  • 14. M. A. Antoniades and G. V. Eleftheriades, “A broadband dual-mode monopole antenna using nri-tl metamaterial loading”, IEEE Antennas Wireless Propag. Lett. 8, 258-261, (2009).
  • 15. M. A. Antoniades and G. V. Eleftheriades, “A folded-monopole model for electrically small nri-tl metamaterial antennas”, IEEE Antennas Wireless Propag. Lett. 7, 425-428, (2008).
  • 16. M. A. Y. Abdalla, K. Phang, and G. V. Eleftheriades, “A planar electronically steerable patch array using tunable PRI/NRI phase shifters”, IEEE T. Microwave Theory Tech. 57, 531-541, (2009).
  • 17. A. K. Iyer and G. V. Eleftheriades, “Leaky-wave radiation from planar negative-refractive-index transmission-line metamaterials”, Antennas and Propagation Society International Symp. 4, 1411-1414, Monterey, 2004.
  • 18. A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial”, J. Appl. Phys. 92, 5930-5935, (2002).
  • 19. A. Grbic, and G. V. Eleftheriades, “A backward-wave antenna based on negative refractive index L-C Networks”, Antennas and Propagation Society International Symp. 4, 340-343, San Antonio, 2002.
  • 20. P. Mookiah and K. R. Dandekar, “Performance analysis of metamaterial substrate based mimo antenna arrays”, Global Telecommunications Conf., 1-4, New Orleans, 2008.
  • 21. P. J. Ferrer, J. Romeu, J. M. Gonzalez-Arbesu, J. Parron, F. Capolino , F. Bilotti, L. Vegni, G. Lovat, and P. Burghignoli, “Broadside radiation enhancement using a spiral resonator MNZ metamaterial substrate”, Antennas and Propagation Society International Symp., San Diego, 2008.
  • 22. K. Buell, H. Mosallaei, and K. Sarabandi, “Metamaterial insulator enabled superdirective array”, IEEE T. Antennas and Propag. 55, 1074-1085, (2007).
  • 23. T. Xu, Y. Zhao, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, “Sub-diffraction-limited interference photolithography with metamaterials”, Optics Express 16, 13579-13584, (2008).
  • 24. J. Han, S. Choi, J. Lim, B. S. Lee, and S. Kang, “Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography”, J. Phys. D: Appl. Phys. 42, 115503 (4pp), (2009).
  • 25. G. Owen, “Electron lithography for the fabrication of microelectronic devices”, Rep. Prog. Phys. 48, 795-851, (1985).
  • 26. Y. Hirayama, H. Yabe, and M. Obara, “Selective ablation of AlN ceramic using femtosecond, nanosecond and microsecond pulsed laser”, J. Appl. Phys. 89, 2943-2949, (2001).
  • 27. K. Lumpp and S. D. Allen, “Excimer laser machining and metallization of vias in aluminium nitride”, IEEE T. Components, Packaging and Manufacturing Tech., part B 20, 241-246, (1997).
  • 28. H. Yabe, A. Takahashi, T. Sumiyoshi, M. Obara, and K. Ishii, “Direct writing of conductive aluminium line on aluminium nitride ceramics by transversely excited atmospheric CO2 laser”, Appl. Phys. Lett. 71, 2758-2760, (1997).
  • 29. M. D. Rostoker, and N. F. Pasch, “Clean laser cutting of metal lines on microelectronic circuit substrates using reactive gases”, Patent US 5539174.
  • 30. N. Morita, T. Watanabe, and Y. Yoshida, “Direct formation of conductor films by laser sublimating of ceramics”, App. Phys. Lett. 54, 1974, (1989).
  • 31. F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. M. Alici, and E. Ozbay, “Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusion”, IEEE T. Microwave Theory and Tech. 55, 2865-2873, (2007).
  • 32. M. Bueno and A. Assis, “A new method for inductance calculation”, J. Phys. D: Appl. Phys. 28, 1802-1806, (1995).
  • 33. F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. M. Alici, and E. Ozbay, “Theoretical and experimental analysis of magnetic inclusions for the realization of metamaterials at different frequency”, IEEE MTTR-S Int. Microwave Symp., 1835-1838, Honolulu, (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5b35260-486a-451d-8fef-6c814cf32e7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.