PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fixed-point results for convex orbital operators

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this article is to introduce a new type of operator similar to those of A. Petruşel and G. Petruşel type (Fixed point results for decreasing convex orbital operators, J. Fixed Point Theory Appl. 23 (2021), no. 35) and prove some fixed-point theorems which generalize and complement several results in the theory of nonlinear operators.
Wydawca
Rocznik
Strony
art. no. 20220184
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Department of Mathematics and Computer Sciences, Transilvania University of Braşov, Braşov, Romania
Bibliografia
  • [1] V. Berinde, A. Petruşel, I. A. Rus, and M. A. Şerban, The retraction-displacement condition in the theory of fixed-point equation with a convergent iterative algorithm, in: T. Rassias, V. Gupta (eds.) Mathematical Analysis, Approximation Theory and Their Applications, Springer, Cham, 2016.
  • [2] S. Reich and A. J. Zaslavski, Well-posedness of fixed-point problems, East J. Math. Sci. Special Volume (Functional Analysis and its Applications), Part III, (2001), 393–401.
  • [3] S. Reich and A. J. Zaslavski, Genericity in Nonlinear Analysis, Springer, New York, 2014.
  • [4] A. M. Ostrowski, The round off stability of iterations, Z. Angew. Math. Mech. 47 (1967), 77–81.
  • [5] I. A. Rus and M. A. Şerban, Basic problems of the metric fixed-point theory and the relevance of a metric fixed-point theorem, Carpathian J. Math. 29 (2013), 239–258.
  • [6] I. A. Rus, Results and problems in Ulam stability of operatorial equations and inclusions, in: T. Rassias (ed.) Handbook of Functional Equations, Springer, New York, 2014.
  • [7] I. A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory 10, (2009), 305–320.
  • [8] A. Petruşel and I. A. Rus, Graphic contraction principle and applications, In: T. M. Rassias, P. M. Pardalos (eds.), Mathematical Analysis and Applications, Springer, Cham, 2019.
  • [9] A. Petruşel and G. Petruşel, Fixed point results for decreasing convex orbital operators, J. Fixed Point Theory Appl. 23 (2021), no. 35.
  • [10] V. Berinde and M. Păcurar, Approximating fixed-points of enriched contractions in Banach spaces, J. Fixed Point Theory Appl. 22 (2020), no. 38.
  • [11] Lj. B.Ciric, A generalization of Banach’s contraction principle, Proc. Am. Math. Soc. 45 (1974), 267–273.
  • [12] W. A. Kirk and B. Sims (eds.), Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, Dordrecht, 2001.
  • [13] S. Reich, Some remarks concerning contractions mappings, Can. Math. Bull. 14 (1971), 121–124.
  • [14] S. Reich, Fixed point of contractive functions, Boll. Un. Mat. Ital. 5 (1972), 26–42.
  • [15] I. A. Rus, A. Petruşel, and G. Petruşel, Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008.
  • [16] E. Llorens-Fuster, Partially nonexpansive mappings, Adv. Theory Nonlinear Analysis Appl. 6 (4) (2002), 565–573.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5b26cbd-f26f-4bdb-b71e-814e858e201a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.